
 

 

  
Abstract—Automotive engine air-ratio plays an important role of 

emissions and fuel consumption reduction while maintains 
satisfactory engine power among all of the engine control variables. In 
order to effectively control the air-ratio, this paper presents a model 
predictive fuzzy control algorithm based on online least-squares 
support vector machines prediction model and fuzzy logic optimizer. 
The proposed control algorithm was also implemented on a real car for 
testing and the results are highly satisfactory. Experimental results 
show that the proposed control algorithm can regulate the engine 
air-ratio to the stoichiometric value, 1.0, under external disturbance 
with less than 5% tolerance. 

 
Keywords—Air-ratio, Fuzzy logic, online least-squares support 

vector machine, model predictive control. 

I. INTRODUCTION 
EHICULAR emissions are the major source of air 
pollution, especially in urban area, which impacts the 

public health and environment significantly. Studies show that 
hundred thousand mortalities every year all over the world 
relate to vehicular emissions and the mortalities cause billions 
economic lost [1,2]. Besides, non-renewable resources scarcity 
promotes the essence of fuel consumption reduction. Air-ratio, 
which is also called lambda, relates closely to emissions, engine 
power and fuel consumption among all of the engine control 
variables. Air-ratio indicates the amount that the actual 
available air-fuel mixture differs from the stoichiometric ratio, 
e.g. 14.7:1 for gasoline, of the fuel being used [3]. Air-ratio is 
measured after combustion, and the reading is taken by using a 
lambda sensor located in the exhaust pipe. 

Reference [4] mentioned that when an air-ratio deviates 
more than 2% from its stoichiometric ratio, the conversion 
efficiencies of three-way catalytic converter for converting 
carbon monoxide, hydrocarbons and nitrogen oxides drops 
more than 50%. Modern automotive engines are controlled by 
the electronic control unit (ECU) which usually uses look-up 
tables with compensation of a proportional-integral-derivative 
(PID) closed-loop controller for air-ratio control. However, the 
engine combustion nature is multivariable, time-variant, 
time-delay and chaotic [5].  
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Such control method cannot produce desirable accurate 
control performance [6]. 

References [7] proposed an emerging and effective feedback 
control strategy for engine air-ratio control, model predictive 
control (MPC) which bases on prediction model and receding 
horizon optimization. For this kind of control strategy, the 
prediction model is a crucial component because the essence of 
MPC is to optimize the forecast of process behavior, and the 
forecast is accomplished with the prediction model. To develop 
successful MPC for real-time engine air-ratio control, an 
accurate and reliable air-ratio model with online update ability 
is necessary. However, the chaotic nature of engine combustion 
[5] makes conventional linear prediction methods inapplicable 
for air-ratio modelling. 

Recently, artificial neural network (NN) is widely applied to 
automotive engine modelling [7,8]. However, the inherent 
drawbacks of NN, including multiple local minima, user 
burden on selection of optimal NN structure and over-fitting 
risk, constrains the application of NN to engine air-ratio control 
[9]. With an innovative nonlinear modelling technique of 
online least-squares support vector machines (OLSSVM) [9], 
[10] which combines the advantages of NN and nonlinear 
regression as well as its self-update ability, the previous 
drawbacks from NN are overcome. Therefore, OLSSVM is 
proposed to build the engine air-ratio model in this paper. 
Based on the multiple-step-ahead prediction of the air-ratio, an 
optimal control signal is obtained to regulate the air-ratio to be 
stoichiometry even when engine speed and load change. In this 
paper, a new optimization algorithm for MPC, fuzzy logic 
optimizer, is also proposed for the receding horizon 
optimization rather than those general optimization techniques, 
like Newton’s method, Brent’s method, sequential quadratic 
programming, etc, due to its fast computation, robustness, low 
cost and insensitive to noise. 

II.  ONLINE LEAST-SQUARES SUPPORT VECTOR MACHINES 
The objective of air-ratio modelling is to build an air-ratio 

model for predicting the future air-ratio using the pervious 
and/or current engine parameters. In this paper, the proposed 
OLSSVM for air-ratio modelling are derived from classical 
least-squares support vector machines (LSSVM), so the 
structures of OLSSVM are presented together with its 
corresponding algorithms after presenting the classical LSSVM 
modelling algorithm. 

A. Classical Least-Squares Support Vector Machines 
The classical LSSVM formulation for the case of nonlinear 

modelling is derived as follows. 
Consider the dataset, D = {(X1,y1)··· (XN,yN)}, with input data 
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Xt ∈ Rd and output yt ∈ R, where N is the number of training 
data. LSSVM deals with the following optimization problem in 
the primal weight space. 
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such that 

( )[ ] Ntbye ttt 1T =+−= Xw ϕ                      (2) 
 
where w is the weight vector of the air-ratio model, e = [e1 ··· eN] 
is the residual vector, and φ(．) maps the input data to a higher 
dimensional feature space, and the bias b. The built air-ratio 
model is expressed as below: 
 

( ) ( ) bMY +== XwX ϕT                        (3) 
 

However, w may be in very high or even infinite dimensions 
that cannot be solved directly. In order to resolve the problem, 
the Lagrangian of (1) is constructed to derive the dual problem 
and the Lagrangian is as below: 
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where αt are Lagrange multipliers. After optimizing (4) and 
eliminating w and e, the LSSVM dual formulation of air-ratio 
modelling is then expressed as below [11]: 
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where y = [y1 ··· yN]T, 1v is an N-dimensional vector = [1 ··· 1]T, α 
= [α1 ··· αN]T, and γ ∈ R is a user-defined hyperparameter. The 
kernel trick is employed as follows: 
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where K(Xn, Xn) is a predefined kernel function and radial basis 
function (RBF) is chosen in this paper. The resulting air-ratio 
model built from classical LSSVM becomes: 
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where αt, b ∈ R are the solution of (5), Xt is the training input 
data vector. X is the new input vector for air-ratio prediction in 
this application. In the RBF kernel function, K(Xt, X), σ2 
specifies the kernel sample variance which is also a 
user-defined hyperparameter, and ║·║ means Euclidean 
distance. Based on (7), the air-ratio model Y=M(X) can be 
obtained. In this paper, leave-one-out cross-validation is 
chosen to infer the values for the two user-defined 
hyperparameters (γ, σ). 

B. Online Incremental Procedure 
By reformulating (5), the following relation is obtained 

below: 
NNN Y=αA                                         (8) 

Where 
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Whenever a new air-ratio sample (XN+1, yN+1) is added to the 
training dataset, D, the updated air-ratio model including N+1 
samples can be obtained by the new incremental procedure: 
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The online incremental procedure aims to efficiently update 

A-1
N+1whenever a new air-ratio sample is added without explicit 

computation of the matrix inverse. Reference [12] showed that 
the matrix inverse A-1

N+1 can efficiently be obtained by: 
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C. Online Decremental Procedure 
The online incremental procedure presented above can 

update and improve the built air-ratio model continually. 
However, the online incremental procedure increases the 
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memory length continuously and the sparseness property in 
classical LSSVM is lost due to the condition αt =γet for 
optimality [12]. Therefore, the online incremental procedure is 
inefficient when dealing with online prediction with 
exceedingly large amount of data because it is costly and there 
is not enough space to store a lot of continually accumulated 
coefficients and data. 

In view of this limitation, an online decremental procedure 
[9] for air-ratio model update is employed. This online 
decremental procedure is done after every online incremental 
procedure presented in the previous section, by omitting the 
earliest trained support values. As a result, the built air-ratio 
model is able to adapt any engine property change by 
continually update the built air-ratio model while maintaining 
the simple approximation and efficient implementation of 
classical LSSVM. 

Specifically, the online decremental procedure means that a 
support value is removed when an earliest training data is 
removed. Similar to the case of the online incremental 
procedure, to avoid computing the matrix inverse, A-1

N must be 
updated from A-1

N+1. Here A-1
N is the matrix without the first 

row and the first column. Based on the way of the online 
decremental procedure, when the first sample is pruned from 
the N+1 pairs of the dataset, the update rule is obtained as 
shown in. (11). 
 

ijjiij βββββ →− −
11

1
11

                            (11) 

 
where i, j = 2 ··· N, βij stands for the element at the i-th row and 
j-th column of A-1

N+1. According to (11), A-1
N can be efficiently 

updated from A-1
N+1without explicitly computing the matrix 

inverse. Then the elements of the air-ratio model can be 
updated with (10). The presented online decremental procedure 
prunes the first air-ratio sample only from the N+1 pairs of the 
dataset that can maintain time history continuity of the built 
air-ratio model. So, the presented OLSSVM makes online 
learning for the classical LSSVM possible. Furthermore, the 
sparseness of the air-ratio model can be maintained by 
gradually pruning of the early trained support vectors. 

III. MODEL PREDICTIVE CONTROL 
MPC is based on prediction model and receding horizon 

optimization. Fig. 1 illustrates the proposed online 
least-squares support vector machines model predictive 
controller (OLSSVMMPC) which consists of an OLSSVM 
air-ratio model and a fuzzy logic optimizer. The OLSSVM 
air-ratio model predicts the engine response over a specified 
time horizon and the predictions are then used by the fuzzy 
logic optimizer to determine the optimal control signal, fuel 
injection time. The optimal fuel injection time is finally fed to 
fuel injectors of the engine. In addition, the measured air-ratio 
updates the OLSSVM air-ratio model continually. 

 

 
Fig. 1 Structure of OLSSVMMPC 

A. Fuzzy Logic Optimizer 
Fuzzy logic deals with uncertain and imprecise situations. 

Linguistic variables (rich, stoichiometry, lean, etc.) are used to 
represent the domain knowledge, with their truth values lying 
between 0 and 1. Basically, a fuzzy logic optimizer has got the 
following components [13]: 
1. A fuzzification interface to scale and map the measured 

variables to suitable linguistic variables. 
2. A knowledge base comprising linguistic control rule base. 
3. A decision making logic to infer the fuzzy logic control 

action based on the input variables, which is much similar 
to the human decision making. 

4. A defuzzification interface to scale and map the linguistic 
control actions inferred to yield a non-fuzzy control signal 
to the fuel injectors of the engine. 

 
TABLE I 

INPUT, OUTPUT, LINGUISTIC VARIABLE AND SCALING FACTOR OF FUZZY LOGIC 
OPTIMIZER 

Original Variable Type Linguistic Variables Scaling Factor 

Engine speed (ES) Input 
Idle (I) 

Cruising (C) 
High speed (H) 

GES 

Predicted air-ratio (λp) Input 

Very rich (VR) 
Rich (R) 

Stoichiometry (S) 
Lean (L) 

Very lean (VL) 

Gλp 

Target air-ratio (λr) Input 
Rich (R) 

Stoichiometry (S) 
Lean (LE) 

Gλr 

Throttle position (TP) Input 
Zero throttle (ZT) 

Partial throttle (PT) 
Full throttle (FT) 

GTP 

Fuel injection time (u) Output 

Low duty (LD) 
Partial duty (PD) 

Medium duty (MD) 
High duty (HD) 
Full duty (FD) 

Gu 

 
 
 
 
 
 
 
 
 
 

Fuel 
injection 

time 

Target air-ratio 

OLSSVM Air-ratio 
Model 

Fuzzy Logic 
Optimizer 

Real 
Engine 

Engine parameters

Measured air-ratio

Predicted air-ratio 
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TABLE II 
FUZZY RULE BASE 

λp = R → λr = S → u = LD 
TP = ZT → λp = S → λr = S → u = PD 

 λp = L → λr = S → u = MD 
 

ES = I →  λp = VR → λr = S → u = PD 
 λp = R → λr = S → u = PD 

TP = PT → λp = S → λr = S → u = PD 
λp = L → λr = S → u = MD 
λp = VL → λr = S → u = MD 
λp = VR → λr = S → u = PD 
λp = R → λr = S → u = PD 

TP = ZT → λp = S → λr = S → u = MD 
 λp = L → λr = S → u = MD 
 λp = VL → λr = S → u = HD 
 
 λp = VR → λr = S → u = PD 
 λp  = R → λr = S → u = MD 

ES = C → TP = PT → λp = S → λr = S → u = MD 
 λp = L → λr = S → u = HD 
 λp = VL → λr = S → u = HD 
 
 λp = VR → λr = S → u = PD 
 λp = R → λr = S → u = MD 

TP = FT → λp = S → λr = S → u = MD 
λp = L → λr = S → u = HD 
λp = VL → λr = S → u = FD 
λp = VR → λr = S → u = PD 
λp = R → λr = S → u = MD 

TP = PT → λp = S → λr = S → u = HD 
 λp = L → λr = S → u = FD 

ES = H →  λp = VL → λr = S → u = FD 
 
 λp = S → λr = S → u = MD 

TP = FT → λp = L → λr = S → u = HD 
λp = VL → λr = S → u = FD 

 
As a demonstration, triangular membership functions are 

used to represent the linguistic variables for all input and output 
variables. All input and output variables of the fuzzy logic 
optimizer, the linguistic variables and the corresponding 
scaling factors for each input and output variable are tabulated 
in Table I. The scaling factors in Table I are used for mapping 
the input and output variables to the respective universes of 
discourses. A rule base developed by heuristics is given in 
Table II and the membership grade of the fuel injection time, 
the fuzzy fuel injector duty cycle uf, is determined by (12). 

 
( ) ( ) ( ) ( )],,,[ rpTPESf rp

GGTPGESGFSu λμλμμμ λλ×=  (12) 

 
where F denotes the fuzzy relation defined in the fuzzy rule 
base, and S is the transfer function of the fuel injector that 
convert the fuzzy duty cycle to the fuel injection time. The 
conventional max-min composition rule of inference is used for 
determining the appropriate fuzzy duty cycle. Here the height 
method of defuzzification is used that the centroid of each 
output membership function for each rule is evaluated first and 
the final optimizer output, u, is calculated as multiplying the 
gain Gu by the average of the individual centroid, weighted by 
their heights as (13). 

( )
( )∑

∑=
f

ff
u u

uu
Gu

μ
μ                                (13) 

IV. EXPERIMENTAL SETUP 
The proposed OLSSVMMPC was implemented and tested 

on a performance test car, Honda DC5 Type-R with K20A 
i-VTEC engine connected to a MoTeC M800 programmable 
ECU and National Instrument (NI) CompactDAQ chassis 
DAQ-9178. NI DAQ-9178 includes an analog input module NI 
9125, an analog output module NI 9263 and a digital 
input/output module NI 9924. The OLSSVMMPC was 
implemented using MATLAB. MoTeC M800 is mainly used 
for engine control whereas NI DAQ-9178 is used for sending 
the control signal to MoTeC ECU via a LabVIEW interface 
program according to the OLSSVMMPC implemented in 
MATLAB. In other words, NI DAQ-9178 serves as an 
interface between the OLSSVMMPC and MoTeC ECU and the 
detail signal flow between the test car and the OLSSVMMPC is 
shown in Fig. 2. 

The training data for building the OLSSVM air-ratio model 
were obtained using a wide-band lambda sensor subject to 
random throttle condition. 

 

 
Fig. 2 Detail signal flows between test car and OLSSVMMPC 

A. Pilot Test 
Fig. 3 shows a test cycle where the throttle position changes 

from 0 to 50% throttle. This change can be viewed as a 
disturbance. The air-ratio is needed to control within the ±5% 
bounds of the stoichiometric value, 1.0. After choosing the 
sampling time to be 0.01s, the effectiveness of the OLSSVMPC 
can be examined. 

 

 
Fig. 3 Throttle position in test cycle 

Performance Test 
Car loaded on a 

chassis 
dynamometer 

(λ, TP, u, etc…) 

NI DAQ-9178 

LabVIEW 
Interface Program

OLSSVMMPC in 
MATLAB

MoTeC M800 
ECU 
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B. Results 
With the above test cycle, the air-ratio control result and fuel 

injection time are shown in Fig. 4 and 5. In Fig. 4, the target 
air-ratio, λr =1.0, is 1. An air-ratio greater than 1 indicating fuel 
lean whereas and an air-ratio less than 1 means fuel rich. 

In order to show the advantages of the proposed 
OLSSVMMPC, its control result is compared with that of a 
typical PID controller used in the existing automotive ECU. 
The PID gains of the controller were obtained by the 
Ziegler-Nichols rules. The best control result and the 
corresponding fuel injection time of the PID controller are 
shown in Figs. 6 and 7. 

 

 
Fig. 4 Air-ratio control result of OLSSVMMPC 

 

 
Fig. 5 Fuel injection time of OLSSVMMPC 

 

 
Fig. 6 Air-ratio control result of PID controller 

 

 
Fig. 7 Fuel injection time of PID controller 

 
Fig. 4 shows that the OLSSVMMPC can control the air-ratio 

with a significantly less deviation from target air-ratio, λr =1.0, 
under disturbance. The control performances of the 
OLSSVMMPC and the PID controller are evaluated through 
three measures: mean absolute percentage error (MAPE) 
defined in (14), maximum overshoot and maximum response 
time which are summarized in Table III. 

 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
=

tN

i

i

tN
MAPE

1
%100

1
11 λ               (14) 

 
where λi  and Nt are the air-ratio at the i-th time step and the total 
number of time step respectively. 
 

TABLE III 
CONTROL PERFORMANCE OF OLSSVMMPC AND PID CONTROLLER 

Controller MAPE Max. Overshoot 
Max. 

Response 
Time 

OLSSVMMPC 0.67% 0.48 2.90s 
PID 2.44% 0.15 3.48s 

 
The MAPE of the OLSSVMMPC and PID controller are 

0.67% and 2.44% respectively. The control performance of the 
OLSSVMMPC is 72.54% better than that of the PID controller. 
Moreover, the OLSSVMMPC can control the overall air-ratio 
deviation within ±5%. Table III also reveals that the maximum 
response time of OLSSVMMPC are superior to the PID 
controller. The promising results show that the proposed 
OLSSVMMPC can really improve the air-ratio control 
performance. 

V. CONCLUSION 
This study is the first attempt at applying MPC by combining 

OLSSVM and fuzzy logic optimizer for engine air-ratio control. 
In view of the high accuracy of the air-ratio model and its 
self-update ability, the OLSSVMMPC can perform air-ratio 
control effectively. The proposed OLSSVMMPC was 
successfully implemented and tested on a real performance car. 
Experimental results show that the air-ratio control 
performance of the OLSSVMMPC is significantly better than 
that of a conventional PID controller in current automotive 
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ECU. Thus, the OLSSVMMPC is a promising control scheme 
to replace the PID controller in the automotive ECU for engine 
air-ratio control. 
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