Search results for: Real-Coded Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3635

Search results for: Real-Coded Genetic Algorithm

1805 A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

Authors: Jinghao Sun, Guozhen Tan, Guangjian Hou

Abstract:

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

Keywords: Chinese Postman Problem, Time Dependent, Integer Programming, Upper Bound Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
1804 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
1803 Speed Sensorless IFOC of PMSM Based On Adaptive Luenberger Observer

Authors: Grouz Faten, Sbita Lassaâd

Abstract:

In this paper, Speed Sensorless Indirect Field Oriented Control (IFOC) of a Permanent Magnet Synchronous machine (PMSM) is studied. The closed loop scheme of the drive system utilizes fuzzy speed and current controllers. Due to the well known drawbacks of the speed sensor, an algorithm is proposed in this paper to eliminate it. In fact, based on the model of the PMSM, the stator currents and rotor speed are estimated simultaneously using adaptive Luenberger observer for currents and MRAS (Model Reference Adaptive System) observer for rotor speed. To overcome the sensivity of this algorithm against parameter variation, adaptive for on line stator resistance tuning is proposed. The validity of the proposed method is verified by an extensive simulation work.

Keywords: PMSM, Indirect Field Oriented Control, fuzzy speed and currents controllers, Adaptive Luenberger observer, MRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422
1802 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1801 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
1800 Improved Processing Speed for Text Watermarking Algorithm in Color Images

Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari

Abstract:

Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.

Keywords: Steganography, watermarking, private keys, time complexity measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1799 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification

Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy

Abstract:

Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.

Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
1798 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network

Authors: K. Rajasekaran, Kannan Balasubramanian

Abstract:

A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.

Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1797 STATCOM based Damping Controller in Power Systems for Enhance the Power System Stability

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

This paper describes the power-system stability improvement by a static synchronous compensator (STATCOM) based damping controller with Differential evolution (DE) algorithm is used to find out the optimal controller parameters. The present study considered both local and remote signals with associated time delays. The performances of the proposed controllers have been compared with different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. To show the effectiveness and robustness of the proposed controller the Simulation results are presented under different disturbances and loading conditions.

Keywords: Controller Design, Differential Evolution Algorithm Static Synchronous Compensator, Time Delay, Power System Stability, Single Machine Infinite-bus Power System, Multi-Machine Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
1796 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1795 Distributed Generator Placement and Sizing in Unbalanced Radial Distribution System

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

To minimize power losses, it is important to determine the location and size of local generators to be placed in unbalanced power distribution systems. On account of some inherent features of unbalanced distribution systems, such as radial structure, large number of nodes, a wide range of X/R ratios, the conventional techniques developed for the transmission systems generally fail on the determination of optimum size and location of distributed generators (DGs). This paper presents a simple method for investigating the problem of contemporaneously choosing best location and size of DG in three-phase unbalanced radial distribution system (URDS) for power loss minimization and to improve the voltage profile of the system. Best location of the DG is determined by using voltage index analysis and size of DG is computed by variational technique algorithm according to available standard size of DGs. This paper presents the results of simulations for 25-bus and IEEE 37- bus Unbalanced Radial Distribution system.

Keywords: Distributed generator, unbalanced radial distributionsystem, voltage index analysis, variational algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738
1794 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition

Authors: Samia Sadouki Chibani, Abdelkamel Tari

Abstract:

Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.

Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1793 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: Agricultural engineering, computer vision, image processing, flower detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
1792 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters

Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz

Abstract:

Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.

Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1791 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: Radar cross section (RCS), fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
1790 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
1789 Study of Measures to Secure Video Phone Service Safety through a Preliminary Evaluationof the Information Security of the New IT Service

Authors: DongHoon Shin, Yunmook Nah, HoSeong Kim, Gang Shin Lee, Jae-Il Lee

Abstract:

The rapid advance of communication technology is evolving the network environment into the broadband convergence network. Likewise, the IT services operated in the individual network are also being quickly converged in the broadband convergence network environment. VoIP and IPTV are two examples of such new services. Efforts are being made to develop the video phone service, which is an advanced form of the voice-oriented VoIP service. However, the new IT services will be subject to stability and reliability vulnerabilities if the relevant security issues are not answered during the convergence of the existing IT services currently being operated in individual networks within the wider broadband network environment. To resolve such problems, this paper attempts to analyze the possible threats and identify the necessary security measures before the deployment of the new IT services. Furthermore, it measures the quality of the encryption algorithm application example to describe the appropriate algorithm in order to present security technology that will have no negative impact on the quality of the video phone service.

Keywords: BcN, Security Measures, Video Phone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1788 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
1787 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications

Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz

Abstract:

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Image processing, real-time recognition, weeddetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1786 Improved Weighted Matching for Speaker Recognition

Authors: Ozan Mut, Mehmet Göktürk

Abstract:

Matching algorithms have significant importance in speaker recognition. Feature vectors of the unknown utterance are compared to feature vectors of the modeled speakers as a last step in speaker recognition. A similarity score is found for every model in the speaker database. Depending on the type of speaker recognition, these scores are used to determine the author of unknown speech samples. For speaker verification, similarity score is tested against a predefined threshold and either acceptance or rejection result is obtained. In the case of speaker identification, the result depends on whether the identification is open set or closed set. In closed set identification, the model that yields the best similarity score is accepted. In open set identification, the best score is tested against a threshold, so there is one more possible output satisfying the condition that the speaker is not one of the registered speakers in existing database. This paper focuses on closed set speaker identification using a modified version of a well known matching algorithm. The results of new matching algorithm indicated better performance on YOHO international speaker recognition database.

Keywords: Automatic Speaker Recognition, Voice Recognition, Pattern Recognition, Digital Audio Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1785 A New Framework for Evaluation and Prioritization of Suppliers using a Hierarchical Fuzzy TOPSIS

Authors: Mohammad Taghi Taghavifard, Danial Mirheydari

Abstract:

This paper suggests an algorithm for the evaluation and selection of suppliers. At the beginning, all the needed materials and services used by the organization were identified and categorized with regard to their nature by ABC method. Afterwards, in order to reduce risk factors and maximize the organization's profit, purchase strategies were determined. Then, appropriate criteria were identified for primary evaluation of suppliers applying to the organization. The output of this stage was a list of suppliers qualified by the organization to participate in its tenders. Subsequently, considering a material in particular, appropriate criteria on the ordering of the mentioned material were determined, taking into account the particular materials' specifications as well as the organization's needs. Finally, for the purpose of validation and verification of the proposed model, it was applied to Mobarakeh Steel Company (MSC), the qualified suppliers of this Company are ranked by the means of a Hierarchical Fuzzy TOPSIS method. The obtained results show that the proposed algorithm is quite effective, efficient and easy to apply.

Keywords: ABC analysis, Hierarchical Fuzzy TOPSIS, Primary supplier evaluation, Purchasing strategy, supplier selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1784 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation

Authors: D. C. Lo, S. S. Leu

Abstract:

In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.

Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1783 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
1782 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: Clustering, force-directed, graph drawing, stock investment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1781 Sensor Optimisation via H∞ Applied to a MAGLEV Suspension System

Authors: Konstantinos Michail, Argyrios Zolotas, Roger Goodall, John Pearson

Abstract:

In this paper a systematic method via H∞ control design is proposed to select a sensor set that satisfies a number of input criteria for a MAGLEV suspension system. The proposed method recovers a number of optimised controllers for each possible sensor set that satisfies the performance and constraint criteria using evolutionary algorithms.

Keywords: H-infinity, Sensor optimisation, Genetic algorithms, MAGLEV vehicles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1780 Agent-based Simulation for Blood Glucose Control in Diabetic Patients

Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour

Abstract:

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Keywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1779 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: Battery charger, forward converter, lithium-ion, management algorithm, SEPIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
1778 Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems

Authors: H. Krouma, M. Barkat, K. Kemih, M. Benslama, Y. Yacine

Abstract:

In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.

Keywords: Adaptive threshold, hybrid double-dwell system, CA-CFAR algorithm, DS-CDMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1777 Problems and Prospects of Agricultural Biotechnology in Nigeria’s Developing Economy

Authors: Samson Abayomi Olasoju, Olufemi Adekunle, Titilope Edun, Johnson Owoseni

Abstract:

Science offers opportunities for revolutionizing human activities, enriched by input from scientific research and technology. Biotechnology is a major force for development in developing countries such as Nigeria. It is found to contribute to solving human problems like water and food insecurity that impede national development and threaten peace wherever it is applied. This review identified the problems of agricultural biotechnology in Nigeria. On the part of rural farmers, there is a lack of adequate knowledge or awareness of biotechnology despite the fact that they constitute the bulk of Nigerian farmers. On part of the government, the problems include: lack of adequate implementation of government policy on bio-safety and genetically modified products, inadequate funding of education as well as research and development of products related to biotechnology. Other problems include: inadequate infrastructures (including laboratory), poor funding and lack of national strategies needed for development and running of agricultural biotechnology. In spite of all the challenges associated with agricultural biotechnology, its prospects still remain great if Nigeria is to meet with the food needs of the country’s ever increasing population. The introduction of genetically engineered products will lead to the high productivity needed for commercialization and food security. Insect, virus and other related diseases resistant crops and livestock are another viable area of contribution of biotechnology to agricultural production. In conclusion, agricultural biotechnology will not only ensure food security, but, in addition, will ensure that the local farmers utilize appropriate technology needed for large production, leading to the prosperity of the farmers and national economic growth, provided government plays its role of adequate funding and good policy implementation.

Keywords: Biosafety, biotechnology, food security, genetic engineering, genetic modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3166
1776 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002