Search results for: topology of bounded convergence
567 GPU-Accelerated Triangle Mesh Simplification Using Parallel Vertex Removal
Authors: Thomas Odaker, Dieter Kranzlmueller, Jens Volkert
Abstract:
We present an approach to triangle mesh simplification designed to be executed on the GPU. We use a quadric error metric to calculate an error value for each vertex of the mesh and order all vertices based on this value. This step is followed by the parallel removal of a number of vertices with the lowest calculated error values. To allow for the parallel removal of multiple vertices we use a set of per-vertex boundaries that prevent mesh foldovers even when simplification operations are performed on neighbouring vertices. We execute multiple iterations of the calculation of the vertex errors, ordering of the error values and removal of vertices until either a desired number of vertices remains in the mesh or a minimum error value is reached. This parallel approach is used to speed up the simplification process while maintaining mesh topology and avoiding foldovers at every step of the simplification.Keywords: Computer graphics, half edge collapse, mesh simplification, precomputed simplification, topology preserving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794566 Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error
Authors: Fangfang Meng, Shuang Cong
Abstract:
In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target state, the situations will become complicated. In this paper, we propose an implicit Lyapunov control method based on the state error to solve the convergence problems for these two degenerate cases. And at the same time, we expand the target state from the eigenstate to the arbitrary pure state. Especially, the proposed method is also applicable in the control system with multi-control Hamiltonians. On this basis, the convergence of the control systems is analyzed using the LaSalle invariance principle. Furthermore, the relation between the implicit Lyapunov functions of the state distance and the state error is investigated. Finally, numerical simulations are carried out to verify the effectiveness of the proposed implicit Lyapunov control method. The comparisons of the control effect using the implicit Lyapunov control method based on the state distance with that of the state error are given.
Keywords: Implicit Lyapunov control, state error, degenerate cases, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501565 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm
Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.
Abstract:
This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266564 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow
Authors: Ali Shatnawi
Abstract:
Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561563 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).
Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154562 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem
Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom
Abstract:
This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.
Keywords: PSO, SA, N-queen, CSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683561 Convergence of ICT and Education
Authors: Raju Kumar
Abstract:
Information and communication technology (ICT) has become, within a very short time, one of the basic building blocks of modern society. Many countries now understanding the importance of ICT and mastering the basic skills and concepts of it as part of the core of education. Organizations, experts and practitioners in the education sector increasingly recognizing the importance of ICT in supporting educational improvement and reform. This paper addresses the convergence of ICT and education. When two technologies are converging to each other, together they will generate some great opportunities and challenges. This paper focuses on these issues. In introduction section, it explains the ICT, education, and ICT-enhanced education. In next section it describes need of ICT in education, relationship between ICT skills and education, and stages of teaching learning process. The next two sections describe opportunities and challenges in integrating ICT in education. Finally the concluding section summaries the idea and its usefulness.Keywords: Education, Information and CommunicationTechnology, Learning, Teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3596560 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications
Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun
Abstract:
GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).
Keywords: spline, GMDH, nonparametric, bias, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135559 Current Starved Ring Oscillator Image Sensor
Authors: Devin Atkin, Orly Yadid-Pecht
Abstract:
The continual demands for increasing resolution and dynamic range in complimentary metal-oxide semiconductor (CMOS) image sensors have resulted in exponential increases in the amount of data that need to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.
Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185558 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets
Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei
Abstract:
The paper is a comparative study of two classical vari-ants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time, in classical CPU and, alternativaly, in parallel GPU implementation.
Keywords: convex feasibility problem, convergence analysis, ınpainting, parallel projection methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448557 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551556 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles
Authors: Reza Hossseynie, Amir Jafari
Abstract:
This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907555 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter
Authors: H. Abderrezek, M. N. Harmas
Abstract:
DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so called terminal scheme to achieve finite time convergence. Lyapounov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.
Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223554 Genetic Algorithm Based Wavelength Division Multiplexing Networks Planning
Authors: S.Baskar, P.S.Ramkumar, R.Kesavan
Abstract:
This paper presents a new heuristic algorithm useful for long-term planning of survivable WDM networks. A multi-period model is formulated that combines network topology design and capacity expansion. The ability to determine network expansion schedules of this type becomes increasingly important to the telecommunications industry and to its customers. The solution technique consists of a Genetic Algorithm that allows generating several network alternatives for each time period simultaneously and shortest-path techniques to deduce from these alternatives a least-cost network expansion plan over all time periods. The multi-period planning approach is illustrated on a realistic network example. Extensive simulations on a wide range of problem instances are carried out to assess the cost savings that can be expected by choosing a multi-period planning approach instead of an iterative network expansion design method.Keywords: Wavelength Division Multiplexing, Genetic Algorithm, Network topology, Multi-period reliable network planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436553 The Hardware Implementation of a Novel Genetic Algorithm
Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras
Abstract:
This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.Keywords: Genetic algorithms, hardware-based machinelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639552 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814551 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170550 Quantity and Quality Aware Artificial Bee Colony Algorithm for Clustering
Authors: U. Idachaba, F. Z. Wang, A. Qi, N. Helian
Abstract:
Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence technique for clustering. It produces higher quality clusters compared to other population-based algorithms but with poor energy efficiency, cluster quality consistency and typically slower in convergence speed. Inspired by energy saving foraging behavior of natural honey bees this paper presents a Quality and Quantity Aware Artificial Bee Colony (Q2ABC) algorithm to improve quality of cluster identification, energy efficiency and convergence speed of the original ABC. To evaluate the performance of Q2ABC algorithm, experiments were conducted on a suite of ten benchmark UCI datasets. The results demonstrate Q2ABC outperformed ABC and K-means algorithm in the quality of clusters delivered.
Keywords: Artificial bee colony algorithm, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120549 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System
Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba
Abstract:
This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.
Keywords: Battery charger, forward converter, lithium-ion, management algorithm, SEPIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741548 Some Discrete Propositions in IVSs
Authors: A. Pouhassani
Abstract:
The aim of this paper is to exhibit some properties of local topologies of an IVS. Also, we Introduce ISG structure as an interesting structure of semigroups in IVSs.Keywords: IVS, ISG, Local topology, Lebesgue number, Lindelof theorem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031547 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013546 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation
Authors: Xin Luo, Jin Huang, Chuan-Long Wang
Abstract:
The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.
Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565545 The Fluid Limit of the Critical Processor Sharing Tandem Queue
Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini
Abstract:
A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.Keywords: Fluid Limit, fluid model, measure valued process, processor sharing, tandem queue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476544 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network
Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.
Keywords: Multi-hop communication, parking monitoring system, TDMA, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616543 Grid-Connected Photovoltaic System: System Overview and Sizing Principles
Authors: Najiya Omar, Hamed Aly, Timothy Little
Abstract:
The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.
Keywords: Sizing PV panels, grid-connected PV, topology of PV array, theoretical and practical methodologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820542 Project Complexity Indices based on Topology Features
Authors: Amer A. Boushaala
Abstract:
The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.Keywords: Activity networks, Complexity index, Networkcomplexity measure, Network topology, Project Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680541 Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems
Authors: Jiming Yang
Abstract:
A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.
Keywords: Convergence analysis, green's function, singularly perturbed, equi-distribution, moving mesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696540 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.
Keywords: Spectral density, stable processes, aliasing, p-adic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585539 Weyl Type Theorem and the Fuglede Property
Authors: M. H. M. Rashid
Abstract:
Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555538 Performance Analysis of a Series of Adaptive Filters in Non-Stationary Environment for Noise Cancelling Setup
Authors: Anam Rafique, Syed Sohail Ahmed
Abstract:
One of the essential components of much of DSP application is noise cancellation. Changes in real time signals are quite rapid and swift. In noise cancellation, a reference signal which is an approximation of noise signal (that corrupts the original information signal) is obtained and then subtracted from the noise bearing signal to obtain a noise free signal. This approximation of noise signal is obtained through adaptive filters which are self adjusting. As the changes in real time signals are abrupt, this needs adaptive algorithm that converges fast and is stable. Least mean square (LMS) and normalized LMS (NLMS) are two widely used algorithms because of their plainness in calculations and implementation. But their convergence rates are small. Adaptive averaging filters (AFA) are also used because they have high convergence, but they are less stable. This paper provides the comparative study of LMS and Normalized NLMS, AFA and new enhanced average adaptive (Average NLMS-ANLMS) filters for noise cancelling application using speech signals.Keywords: AFA, ANLMS, LMS, NLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934