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Abstract—A sequence of finite tandem queue is considered for
this study. Each one has a single server, which operates under the
egalitarian processor sharing discipline. External customers arrive at
each queue according to a renewal input process and having a general
service times distribution. Upon completing service, customers leave
the current queue and enter to the next. Under mild assumptions,
including critical data, we prove the existence and the uniqueness
of the fluid solution. For asymptotic behavior, we provide necessary
and sufficient conditions for the invariant state and the convergence
to this invariant state. In the end, we establish the convergence of a
correctly normalized state process to a fluid limit characterized by a
system of algebraic and integral equations.

Keywords—Fluid Limit, fluid model, measure valued process,
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I. INTRODUCTION

CONSIDER a finite sequence of queues indexed from 1
to J . Each queue j is assumed to have a single server

and an infinite storage capacity. All customers present in the

system are served simultaneously according to the egalitarian

processor sharing rule: at any time, each of them is served

at a rate that is the inverse of the total number of customers

in the system. Customers arrive at queue j from the outside

and receive some service. Upon service completion, customers

may leave the queue, or become to some next queue i i.e. i =
j +1. We call this system a PS Tandem Queue. This paper is

devoted to study the dynamics of this system which described

by a deterministic system of algebric and integral equations.

Our goal in this paper is to prove the existence, uniqueness,

and asymptotic behavior of the solutions to the fluid model

based on the limit theorems (law of large numbers).

In the literature, several authors were studied the system

of GI/GI/1 queue serving customers according to Processor

Sharing (PS) policy. Ben Tahar and Jean-Marie [1] generalized

the PS queue to multiclass case, they established the

convergence of a properly normalized state process to a fluid

limit. They showed the existence of a unique solution, both

for a stable and an overloaded queue. Gromoll [2] established

a diffusion approximation for a measure-valued descriptor of

a single server processor sharing queue. Gromoll et al. [3]

described the fluid limit results for the PS queue with the

so-called state descriptor measure. Puha and Williams [4]

studied the critical fluid of model of PS queue, they provided

sufficient conditions for a fluid model solution to converge

to an invariant state and gave a rate of this convergence.
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Jean-Marie and Robert [5] established that the queue length

of an overloaded, single class PS queue grows asymptotically

linearly with time, and gave the value of the growth rate.

In this paper we generalized the PS queue to a PS Tandem

Queue, for the most part we use the same notation and

terminologies as [1]. We model the dynamics system by

means of three J-dimensional random processes: A, D and

μ taking values respectively in N J , N J and MJ the space of

finite, nonnegative Borel measures on R+ endowed with the

topology of weak convergence. This tandem network has a set

J of GI/GI/1 PS queue. Based on this link between queues,

the fluid scaled processes (Ār(t), D̄r(t), μ̄r(t)) converges in

distribution to a solution of some fluid model.

The components of these vectors correspond, respectively,

to the number of arrivals Aj(t) and departures Dj(t) from

queue j up to time t, and μj(t) is a measure valued process

that keeps track of all residual service times of jobs in queue

j.

A fluid model is a system of dynamic equations associated

with data (α, ν, P ) where α is the vector of exogenous

arrival rates, ν is a vector of probability laws in which each

component νj corresponds to the distribution of i.i.d. service

times within queue j and P = (pkl) corresponds to the routing

matrix associated with an open network. A solution to the

fluid model characterized by (α, ν, P ) is a family of two

real-valued, and one measure-valued vectors of continuous

functions A, D, and μ respectively, that satisfy the flow

conservation equations:

A(t) = αt+tPD(t), 〈1, μj(t)〉 = 〈1, μj(0)〉+Aj(t)−Dj(t)
and,

μj(t)([x,∞)) = μj(0)([x+ Sj(t),∞))

+

∫ t

0

νj([x+ Sj(s, t),∞))dAj(s) . (1)

for all j ∈ J where J = {1, . . . , J}, and t ≥ s ≥ 0, Sj(s, t)
is the accumulated service quantity devoted to any customer

present in queue j over [s, t], in the fluid model and Sj(t) =
Sj(0, t).

In a tandem queue, P = (pji j, i ∈ J ) is a superior

triangular matrix defined by

pji =

{
1 if i = j + 1
0 otherwise

(2)

That resumes the routing matrix from a queue j to a queue

j+1. The transition of customers between queues is uniquely

possible from the queue j to queue j + 1, the analyse of first

queue is equivalent to that obtained for GI/GI/1 PS queue

with data (α1, ν1) where its fluid solution is the restrictive
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fluid solution to queue 1 of our system of PS Tandem Queue.

For the next queue, our approach is based on the backward

link between queues. Therefore, we reduced the fluid model

that evolves as (1) to some equation of the form

Y (t) = g(S(t)) +

∫ t

0

tG(S(t)− S(s)) d D(s)

+

∫ t

0

K(S(t)− S(s)) ds (3)

S(t) =

∫ t

0

1

Y (u)
du. (4)

where g, K : [0,∞) �→ R+, G : [0,∞) �→ R+J are

continuous and nonincreasing functions and D : [0,∞) �→
R+J is a continuous and nondecreasing function. In analysing

each queue j, the functions g,K,G are given in functions of

data (αj , νj , P ), and the function D(t) is defined in function

of Di(t) for all i ≤ j−1 and D(t) = 0 for j = 1. When D = 0
the equation (3) can be reduce to a renewal equation for which

existence and uniqueness is known to hold. This reduction is

not possible for a general D. A different approach to prove

existence and uniqueness is used. We prove that (3) admits

a solution and under Lipschitz condition on initial state, this

solution is unique. Thereafter, using induction reasoning, for

each j, it is shown that the fluid solution exists and unique.

The paper is organized as follows: Section I-A contains the

preliminaries and definition of fluid solution model which are

necessary for stating the results. This includes the dynamics

description of the processor sharing tandem queue, the basic

equations for the system and a discussion of the fluid

model (Sections I-A1, I-A2 and I-A3). Section II presents

the main results theorems (existence, uniqueness and the

asymptotic behavior of fluid solution). Finally, in Section III

we summarize the main ideas of this work.

Notations. Let J be the set {1, . . . , J} of all queues

and R+ denote the non-negative real numbers, R∗
+ denote

the positive real numbers and RJ
+ denote the J-dimensional

Euclidean space. Vectors will be normally arranged as a

column. As an exception, the vector e stands for a row

vector of ones. The transpose of a vector or matrix A is

denoted by tA. the J × J diagonal matrix whose entries are

given by the components of x will be denoted by diag{x}.

For two matrices of measurable functions F (·) and G(·)
defined on R+, we denote by the matrix-valued functions

(F ∗ G)(x) for x ∈ R+, the matrix convolution formed

of the elements: (F ∗ G)ij(x) =
∑

k(Fik ∗ Gkj)(x). This

operation is associative and distributive over matrix addition.

The multiplication by a constant matrix C can be seen as

a convolution, where each element Cij is interpreted as the

function Cij1x≥0. Associativity therefore holds for mixed

scalar products and convolutions. The nth convolution power

of a matrix F (x) is denoted with F ∗n(x). For a continuously

differentiable function g, we write g′(x) = d
dxg(x).

The set of finite, nonnegative Borel measures on R+ is

denoted by M. The measure δ+x denotes the element of M
with mass one at x > 0. We write 〈g, μ〉 = ∫

g dμ for μ ∈ M
and a Borel measurable function g which is integrable with

respect to μ. When g = 1A for a measurable set A, we simply

write μ(A). The space M is endowed with the weak topology,

for which it is a Polish space. For a sequence (μn, n ≥ 1)
and μ of M, the weak convergence of (μn, n ≥ 1) to μ is

denoted as μn
w−→ μ. The symbol 0 denotes the zero measure

of MJ , the dimension J being always clear from the context.

Let Mc,J = {ξ ∈ MJ : ξj({x}) = 0 for all x ∈ R+ and

j ∈ J } be the set of vectors of finite, non-negative Borel

measures on R+ that have no atoms, and let Mc,p,J = {ξ ∈
Mc,J : ξj �= 0 for all j ∈ J } be the set of positive measures

of Mc,J . We will use ⇒ to denote convergence in distribution

of a sequence of random elements of a metric space.

A. The Model

We construct in this section the evolution equations for the

system, which will be the basis for the analysis.

1) Queueing Model, Primitive Processes and Initial
Conditions: We consider a Processor Sharing Tandem Queue

Networks composed of J queues. For each j ∈ J , as

already presented in [1], we assume that there are two i.i.d.

sequences of random variables, uj = {uj(i), i ≥ 1} and

vj = {vj(i), i ≥ 1}. Each element of uj and vj takes values

respectively in R+ and R∗
+. For each i ≥ 1 and j ∈ J ,

uj(i) is the interarrival time between the (i−1)th and the ith
arriving job in queue j, and vj(i) is the service time for the

ith job of queue j.Let then, Uj(i) =
i∑

k=1

uj(k) is the time at

which the ith arrival enters the queue j, which has a value

as zero if i = 0, and Vj(i) =
i∑

k=1

vj(k) is the total amount of

time required from the server to process the first i arrivals at

queue j. The sequences

u1, . . . , uJ , v1, . . . , vJ

are assumed mutually independent. They constitute the

primitive data of the system.

It is assumed that for each j ∈ J , the distribution νj
does not charge the origin, νj({0}) = 0, and satisfies:

〈χ, νj〉 < ∞ (finite expectation). For each j, let Ej(t) =
sup{n :

∑n
i=1 uj(i) ≤ t} be the number of exogenous arrivals

in queue j by time t. Denote by E(t) = (E1(t), ...,EJ(t)).
Any costumer that is present in the system at time zero is

called an initial job. For each j ∈ J , we assume that there

exists an integer random variable with finite mean Zj(0)
and an i.i.d. sequence of strictly positive random variables

v0j = {v0j (i), i ≥ 1} with a common Borel probability measure

ν0j , such that

v01 , . . . , v
0
J , Z1(0), . . . , ZJ(0)

are mutually independent. Then, Zj(0) be the number of initial

job at queue j and v0j (i) be the service time requirement of

the ith initial job in queue j.

The routing matrix P is assumed to be open, that is, the

matrix

Q = I +tP + (tP )2 + ... (5)

is finite, which is equivalent to requiring that (I −tP ) be

inversible. We denote Q = (I −tP )−1.
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2) Queuing Equations: Let

A(t) = (A1(t), ...,AJ(t)) , D(t) = (D1(t), ...,DJ(t)),

Z(t) = (Z1(t), ...,ZJ(t))

be a random processes such that Aj(t),Dj(t) and Zj(t) are

respectively, the total number of arrivals by time t at, the

number of departures by time t from, and the number of

customers present at time t in, queue j. For each j ∈ J ,

those processes satisfy the following queueing equations:

A1(t) = α1t (6)

Aj(t) = αjt−
j−1∑
i=1

Zi(t) +

j−1∑
i=1

Zi(0) (7)

Dj(t) =

Zj(0)∑
i=1

1{ v0
j (i)≤Sj(t) }

+

Aj(t)∑
i=1

1{ vj(i)≤Sj(t)−Sj(Uj(i)) } (8)

Z(t) = Z(0) +A(t)−D(t) (9)

Sj(t) =

∫ t

0

1

Zj(s)
ds . (10)

Equation (6) is the arrival for the first queue i.e., j = 1.

The functions in equations (7) and (8) are, respectively,

the arrivals and departures by time t for queue j where

j = 1, . . . , J . Equation (9) is the queue lengths per station

with input/outputs. And the function in (10) means the

accumulative amount of service time allocated per job up

to time t at station j. Hence, Sj(t) − Sj(s) is the amount

of service received in the interval [s, t] at queue j. For

each j ∈ J , we define the measure-valued function of time

μj : [0,+∞) → M by

μj(t) =

Zj(0)∑
i=1

δ+( v0
j (i)−Sj(t) ) +

Aj(t)∑
i=1

δ+( vj(i)−Sj(t)+Sj(Uj(i)) ).

(11)

Recall that δ+ is the Borel measure on R+ with mass one at

x > 0. At each time t, ( v0j (i)−Sj(t) )
+ and ( vj(i)−Sj(t)+

Sj(Uj(i)) )
+ are the residual service times for queue j of,

respectively, the ith initial job, and the ith job. This defines

μj(.) as a measure-valued stochastic process with sample path

in the Polish space D([0,+∞),M) of r.c.l.l. function from

[0,+∞) to M. In [3], this process is referred to as the state

descriptor. The number of customers in queue j at time t is

given by

Zj(t) = 〈1,μj(t)〉 . (12)

3) Fluid Model: The fluid model shares the following

parameters with the discrete model: the nonnegative vector

α = (α1, ..., αJ), the vector of Borel probability measures

ν = (ν1, ..., νJ) and the nonnegative routing matrix P satisfies

(2). The required assumptions on this parameters are the same

as above: for j ∈ J , the measure νj does not charge the

origin, 〈χ, νj〉 < ∞, and the routing matrix P has spectral

radius strictly less than one. Hence the matrix Q = (I−tP )−1

is well defined. Define the vector λ = Qα. The global arrival

rate in the queue j is then λj , and the load factor of the queue

j is ρj = λj〈χ, νj〉.
Definition 1 (Fluid Solution Model): Let (α, ν, P ) be some

data and ξ ∈ Mc,p,J be an initial state. A fluid solution is a

triple (A(t), D(t), μ̄(t)) of two real-, and one measure-valued

vectors of functions: A, D : R+ → RJ
+, and μ̄ =

(μ̄1, ..., μ̄J) : R+ → MJ such that μ̄(0) = ξ, and

i) A and D are continuous and increasing componentwise,

ii) The triple satisfies the relations

A1(t) = α1t (13)

Aj(t) = αjt−
j−1∑
i=1

Zi(t)

+

j−1∑
i=1

Zi(0) j = 2, . . . , N. (14)

〈1, μ̄j(t)〉 = 〈1, ξj〉+Aj(t)−Dj(t) (15)

μ̄j(t)(Ix) = ξj(Ix+Sj(t))

+

∫ t

0

νj(Ix+(Sj(t)−Sj(s))) dAj(s) (16)

for every j ∈ J and for all t, x ∈ R+, where

Sj(t) =

∫ t

0

1

〈1, μj(s)〉 ds (17)

for all t < tj = inf{t : μj(t) = 0}.

Denote the total mass of μ̄j(t) by

Zj(t) = 〈1, μ̄j(t)〉 . (18)

Since ξj is a finite measure for each j ∈ J , let ν0j be a

probability measure such that ξj = Zj(0)ν
0
j , where Zj(0) =

〈1, ξj〉. For each j ∈ J , let vj and v0j be a random variables

with respectively a distribution νj and ν0j . Denote by B0 =
diag{B0

j ; j ∈ J } and β0 = diag{β0
j ; j ∈ J }, where B0

j the

distribution function of ν0j and β0
j = 〈χ, ν0j 〉. As a particular

case of (16), we have the law of evolution for Zj :

Zj(t) = Zj(0)P(v0j > Sj(t))

+

∫ t

0

P(vj > Sj(t)− Sj(s)) dAj(s) (19)

with ξj(Ix) = Zj(0)P(v0j > x) for all j ∈ J and x ≥ 0.

Observe that the state of each queue j of the such system is

defined in functions of (Aj(t), Dj(t), Zj(t)). We represent in

vectoriel forms for each j ∈ J the system of equations (14),

(15) and (19) by using the backward link between queues,

A(t) = αt+tPD(t) (20)

Z(t) = Z(0) +A(t)−D(t) (21)

Z(t) = (I −B0)(Sj(t))Z(0)

+

∫ t

0

(I −B)(Sj(t)− Sj(s))dA(s) (22)

Where j ∈ J .
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II. SUMMARY OF RESULTS

The main results of the paper are presented in this section.

on the one hand, we discuss the existence and uniqueness

result (Theorem 1), and the asymptotic result as t → ∞
(Theorem 2). Finally, we introduce the framework for the

convergence of the discrete process to a fluid limit, and state

the result (Theorem 3).

A. Existence and Uniqueness

The next result provides existence and uniqueness of the

fluid solution. In the case of a critical system which in initially

not empty, we have a reduction of the evolution equation for

fluid model corresponding to queue j where the functional

equations (3)-(4) play an important role to proved the theorem

below.

Theorem 1: Given a critical data (α, ν, P ) such that the

matrix P satisfies (2) and ξ ∈ Mc,p,J be an initial state.

There exists a fluid solution (A(t), D(t), μ(t)) of the model

such that μ(0) = ξ. This solution is such that

W̄j(t) =
(
W̄j(0) + (ρj − 1)t

)+
, (23)

for j = 1, . . . , J . Where W̄j(·) is the total workload at queue

j. Moreover, if x → ξ([0, x]) is a lipschtzian function with a

Lipschitz constant b. Then the fluid solution is unique.

B. Asymptotic Results

In this section, we give the convergence results of the fluid

model to an invariant state. For that we start with the following

definition of the invariant state.

Definition 2: A measure ξ ∈ MJ is an invariant state

for the fluid model associated with data (α, ν, P ), if the

component μ of the fluid solution satisfies

μ(t) = ξ for all t ≥ 0 (24)

Let Δ(x) be measure valued J×J-matrix with components

Δij(x) for i, j ∈ J defined by

Δ(x) = A−1B diag(νe [x,+∞)) (25)

where A and B are two J × J matrices defined by

A = I + ββeQ and B = β0βe + ββeQ.

The following asymptotic result concern the trajectories of

the fluid limit when t → ∞.

Theorem 2: Given a critical data (α, ν, P ) and ξ ∈ Mc,J

and assuming that β0
j = 〈χ, ξj〉 < ∞, βj = 〈χ, νj〉 < ∞

and βe
j = 〈χ, νej 〉 < ∞ for all j ∈ J , then, as t → ∞,

μ(t) [x,+∞) converge to the limit denoted μ(∞) [x,+∞) ,

we have:

μ(∞) [x,+∞) = Δ(x)Z(0). (26)

We have in the following the consequence of the last theorem

which is the limit of the total mass when t → ∞.

Corollary 1: Given a critical data (α, ν, P ) and ξ ∈ Mc,J

and assuming that the convergence (26) holds. Then the

vector (Z1(∞), . . . , ZJ(∞)) limit (Z1(t), . . . , ZJ(t)), where

〈1, μj(t)〉 = Zj(t),

Zi(∞) =
2β0

i

β
(2)
i

Zi(0)− 2βi

β
(2)
i

(
i−1∑
k=1

(Zk(∞)− Zk(0))

)
. (27)

Therefore,

Z(∞) = Δ(0) Z(0). (28)

C. Convergence to the Fluid Model

Consider a sequence of multiclass processor sharing queues

indexed by integer numbers r. Assume that this model is

defined on probability space (Ω,Pr), and that it has the same

basic structure as described in [1]. The primitive increments

are denoted by ur
j = {ur

j(i), i ≥ 1}, vrj = {vrj (i), i ≥ 1} and

ϕr,j = {ϕr,j(i), i ≥ 1}, for all j ∈ J . The data of the r-th

queue is (αr, νr, P r).
Assumptions for primitive data. It is assumed that

ur
1, . . . , u

r
J , v

r
1, . . . , v

r
J (29)

are mutually independent and 〈χ, νrj 〉 < ∞, for all j ∈ J .

When r → ∞,

αr
j → αj , for all j ∈ J (30)

Each matrix P r has a spectral radius < 1.

νrj
w−→ νj (31)

〈χ, νrj 〉 → 〈χ, νj〉 (32)

E(ur
j(1);u

r
j(1) > r) → 0 . (33)

Recall that λr = Qrαr and ρrj = λr
j〈χ, νrj 〉. Assumptions

(30) and (32) guarantee the following convergence λr
j → λj

for all j ∈ J , and ρrj → ρj = λj〈χ, νj〉.

The fluid-scaled processes. The fluid-scaled processes that will

give rise to a fluid limit are defined as:

Ār
j(t) =

Ar
j(rt)

r
, D̄r

j (t) =
Dr

j(rt)

r
, Ēr

j (t) =
Er
j(rt)

r
,

Z̄r
j (t) =

Zr
j(rt)

r
, W̄ r

j (t) =
Wr

j(rt)

r
, μ̄r

j(t) =
μr

j(rt)

r
.

In particular, if we define S̄r
j (t, u) = Sr

j(rt, ru), then:

S̄r
j (t, u) =

∫ ru

rt

1

Zr
j (s)

ds.

Assumption for initial conditions. We assume that the sequence

of initial service times for each j ∈ J is denoted by

v0,rj = {v0,rj (i), i ≥ 1} with ν0,rj its distribution, and the

initial number of customers is Z̄r
j (0).

v0,r1 , . . . , v0,rJ , vr1, . . . , v
r
J , Z̄

r
1(0), . . . , Z̄

r
J(0) (34)

are mutually independent and 〈χ, ν0,rj 〉 < ∞, for all j ∈
J . Moreover, assume that there exist a vector Z̄(0) =
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(Z̄1(0), . . . , Z̄J(0)) ∈ RJ
+ and a measure-valued vector ν0 =

(ν01 , . . . , ν
0
J) ∈ MJ such that for each j ∈ J we have

Z̄r(0) ⇒ Z̄(0) (35)

ν0,rj
w−→ ν0j (36)

〈χ, ν0,rj 〉 → 〈χ, ν0j 〉 (37)

〈1{x}, ν0j 〉 = 0 for all x ∈ R+. (38)

Fluid limit result.

Theorem 3: Consider a sequence of PS Tandem Queue

as defined above, satisfying assumptions (29)-(38). Then the

sequence of fluid-scaled processes converges as:

(Ār, D̄r, μ̄r) ⇒ (A,D, μ),

where (A,D, μ) is a fluid solution such that μj(0) = Zj(0)ν
0
j

for all j ∈ J .

III. CONCLUSION

We have provided results available for the fluid

approximation to the critical PS Tandem Queue. This

includes the existence, uniqueness and asymptotic of fluid

solution. Furthermore, the convergence to the invariant state

has been presented.

REFERENCES

[1] A. Ben Tahar and A. Jean-Marie, The fluid limit the multiclass processor
sharing queue, Queueing Syst. 71(4): 347-404, 2012.

[2] Gromoll, H.C. Diffusion Approximation for a Processor Sharing Queue
in Heavy Traffic, Ann. Appl. Probab. 14, 555-611 2004.

[3] Gromoll, H. C., A. L. Puha, R. J. Williams, The fluid limit of a heavily
loaded processor sharing queue, Ann. Appl. Probab., 12, 797–859, 2002.

[4] A. L. Puha, R. J. Williams, Invariant states and rates of convergence for
the fluid limit of a heavily loaded processor sharing queue, Ann. Appl.
Probab., Vol. 14, pp. 517–554, 2004.

[5] A. Jean-Marie, A., P. Robert. On the transient behavior of some single
server queues, Queueing System Theory Appl. 17 129136 1994.

Amal Ezzidani is a Ph.D. student in Applied Mathematics at Computer,
Networks, Mobility and Modeling laboratory, Faculty of Sciences and
Technologies, Hassan 1st University, Settat, Morocco. He has completed
his Bachelors degree in Mathematics and Applications at the Faculty of
Sciences, Semlalia University, Marrakech, Morocco, in 2014, and he received
the Masters degree in Mathematics and Applications from Faculty of Sciences
and technologies, Hassan 1st University, Settat, Morocco, in 2016. His current
research interests Probability, Discrete stochastic processes, queueing network
models.

Abdelghani Ben Tahar received his PhD degree in applied mathematics from
Hassan II University, Casablanca, Morocco in 2001. He was in an INRIA
post-doctoral at Rocquencourt and a CNRS post-doctoral fellows at LIRMM,
Montpellier, France, and a lecturer at LMRS (UMR 6085 CNRS-Univ. Rouen).
Since 2009 he is a Professor at Hassan 1st University, Settat, Morocco.
His current elds of research interests are focusing on networks performance
evaluation and queueing network models.

Mohamed Hanini is currently a professor at the department of Mathematics
and computer science in the Faculty of Sciences and techniques, Hassan 1st
University Settat, Morocco. He obtained his PhD degree in mathematics and
computer in 2013. He is the author and co-author of several papers related to
the elds of modeling and performance evaluation of communication networks,
cloud computing and security. He participated as TPC member and as an
organizing committee member in international conferences and workshops,
and he worked as reviewer for several international journals.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:15, No:1, 2021 

28International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

1,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

75
4.

pd
f


