
World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

Comparative Analysis of Classical and Parallel
Inpainting Algorithms Based on Affine

Combinations of Projections on Convex Sets
Irina Maria Artinescu, Costin Radu Boldea and Eduard-Ionut Matei

Abstract—The paper is a comparative study of two classical vari-
ants of parallel projection methods for solving the convex feasibility
problem with their equivalents that involve variable weights in the
construction of the solutions. We used a graphical representation of
these methods for inpainting a convex area of an image in order to
investigate their effectiveness in image reconstruction applications.
We also presented a numerical analysis of the convergence of
these four algorithms in terms of the average number of steps and
execution time, in classical CPU and, alternativaly, in parallel GPU
implementation.

Keywords—Convex Feasibility Problem, Convergence analysis,
Inpainting, Parallel Projection Methods.

I. INTRODUCTION

ONE aim in all the classical problems in computational
mathematics is to look for a solution that satisfies a given

set of equations or inequations. In the past the projection meth-
ods were utilized to solve some systems of linear equations
in Euclidean spaces [8] and were modified to be applied at
systems of linear inequalities in [3], [16], [17]. The classical
step in these first algorithms consists of projections onto some
affine subspaces or half-spaces. Later, the method becomes
more sophisticated [13], [14], [15], being adapted to resolve
the overall convex feasibility problem of finding points inside
the intersection of a family of closed convex sets in a given
metric space. A detailed mathematical approach may be found
in [4], [9].

The affine projection methods have numerous applications
in watermarking, in data compression, in NMR imaging,
neural networks or in image filtering - see [7] for other
applications - but it was never employed in image recovery
by inpainting until 2018, when an affine projection method
SCAPF was proposed in [1] to recover small ”scratches”
in damaged images. In this paper we propose two variants
of inpaintig algorithms based on parallel projection methods
(PPM) which uses affine combinations with variable weights
of the projections of an outer point on the sides of a convex
polygon , in order to obtain a (finite) series of points ending
inside it. The inpainting technique uses these finite series of
points to transfer information from the outside to inside of the

I.M. Artinescu is with the Department of Computer Science, West
University of Timişoara, 4 V.Pârvan, Timişoara, Romania, e-mail: arti-
nescu irina@yahoo.com

C.R. Boldea (cboldea@inf.ucv.ro) and E.-I. Matei (eduard-
matei@outlook.com) are with Department of Computer Science, University
of Craiova, 13 A.I.Cuza, Craiova, Romania.

convex polygon, thus defining a new method of generating
patterns for filling the small damaged regions of images. The
method is proposed as an alternative to the classical inpainting
techniques by copying external patterns [6],[5] or by ”filling”
the damaged region using textures synthesis [12].

Although the mathematical analysis of the convergence of
assorted parallel projection methods used to solve the convex
feasibility problem was extensively described in [4] and [10],
the derived algorithms don’t converge generally in finite time.
Very few studies approached the direction of determining
which algorithm converges in finite time almost everywhere
within the Euclidean space. For instance, only in 2007 an
algorithm in finite steps was proposed, supported alternative
projections on two convex sets, to resolve the linear conic
optimization problem [18]. Concerning the classical EMOPP
algorithm [9], in 2018 was proved [2] that it does not converge
in the finite number of steps in the case of a rectangular
convex, for starting points belonging to large regions of the
Euclidean plane.

Under these circumstances, a comparative study of the
convergence of our variants of affine projection methods is re-
quired to verify their usefulness for graphical applications. For
this purpose , we implemented the two algorithms proposed by
us, together with the classic PPM and EMOPP algorithms, in
the first stage in C ++, using them, comparatively, to inpainting
a rectangular region of an image affected by information loss.

Nowadays, the need to process large amounts of data, such
as image processing, as well as the mathematical complexity
of the calculations required in graphics, have led to the
development of processing methods using graphics processors
(GPU). Starting from 2013, GPU based parallelization, imple-
mented in CUDA or OpenCL, has been successfully used to
accelerate the projection process in iterative reconstruction of
images [19], [20]. In the case of projection-based inpainting
algorithms, the complexity of the calculation is determined
by the number of iterations required to transfer a pixel from
outside the affected area inside it and by the number of pixels
needed to ”fill” the image. In the second part of this paper we
described and analysed comparatively the parallel implemen-
tation in OpenCL on the GPU of the above algorithms.

II. THE CONVEX FEASIBILITY PROBLEM (CFP) AND THE
PARALLEL PROJECTION METHOD (PPM)

The convex feasibility problem (CFP) was formulated in [9]
as :

661International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

Given m closed convex sets C1, C2, . . . , Cm ⊆ Rn,
with nonempty intersection, ∩Ci �= ∅, defined by Ci =
{x ∈ Rn | fi(x) <= 0} , with fi : Rn → R a convex
function, the CFP is to find a point x ∈ C =

⋂m
i=1 Ci .

This problem was approached using projection algorithms
that propose, starting from an arbitrary point exterior to C =⋂m

i=1 Ci, to construct a sequence of points converging to a
point inside C [4].

The Parallel Projection Method (PPM), which is governed
by the iteration ([11]):

(∀n ∈ N )Qn+1 = Qn + λn(
∑

i∈1..n

wiPi(Qn)−Qn), (1)

where ε < λn < 2−ε are the relaxation parameters, 0 < ε < 1
and

∑
i∈1..n wi = 1. The fixed weight wi and the relax-

ation parameters λn introduced a significative modification
of efficiency of this algorithm. Later, some modifications of
this method, involving different classes of control index sets
{In}, that proposed a generalization of PPM under the name
Extrapolated Method of Parallel Projections (EMOPP) were
analyzed in [9]. The iteration of this method is similar to (1):

(∀n ∈ N )Qn+1 = Qn + λn(
∑
i∈In

wiPi(Qn)−Qn), (2)

where the indices set {In}, called control sequence, are
variable from one iteration to another. Many variants of the
control sequences where studied in [9].

Although EMOPP is generally faster than PPM, it does not
always converge in finite number of steps [2]. To correct this
deficiency, an iterative algorithm called Scratch Covering by
Affine Projection Filling (SCAPF), derived from PPM and
used for inpaintig a simple scratch of an image was introduced
in [1]. The SCAPF algorithm used at each iteration variable
weights of the affine combination of projections for each
iteration (1), weights that depend on the relative position of
the current point relative to the convex target. In this paper we
compared the convergence and time efficiency of two iterative
variants of SCAPF implemented on CPU arhitecture with the
original PPM and EMOPP algorithms, and we proposed a
parallel implementation of these algorithms using the graphical
processor (GPU).

III. THE PROPOSED VARIANTS OF PARALLEL PROJECTION
METHOD

The algorithms proposed by us have a starting point based
on Parallel Projection Method (1) with constant λi ≡ 1 and
the Extrapolated Method of Parallel Projections (2) and are
described below:

mPPM AND mEMOPP ALGORITHMS

Input A finite set {P} = {P1, P2, . . . , Pn} of a convex
polygon.
Output The image of the inpainted polygon with NPmax
exterior points and the descriptive analysis of the number of
iterations for all points

1 Define O ← 1
n

∑n
i=1 Pi; (The center of the polygon)

2 Define an outer region of the polygon as the starting
points of the algorithm:

RG ← {
Q ∈ R2|d(Q,O) < 2 ∗ r} ,

where r ← maxj{d(O,Pj)}.
3 forj ← 1 to NPmax

Generate a random point Qj,0 ∈ RG ∩ Ext(P)
4 j ← 1 and k ← 0
5 repeat

5.1 Determine the projections on the polygon
sides:

Mj,k,i = pr(Qj,k, PiPi+1),

by convention (Pn+1 = P1) and di,k =
dist(Qj,k, PiPi+1)

5.2 Compute the weights

wi,k =
1/(di,k + 1)∑
i∈I 1/(di,k + 1)

where I = {1, 2, . . . , n} . 1

5.3 The next point Qj,k+1 is determined by

Qj,k+1 = Qj,k + λk(
∑
i∈I

wiMj,k,i −Qj,k)

until (Qj,k+1 ∈ IntP) or (k > NrMaxIterations)
6 if Qj,k+1 ∈ Int(P) then color(Qj,k+1) ←

color(Qj,k)
7 repeat from Step 5 with j ← j + 1 and k ← 0.

The control sequence λi is chosen to verify 1 < λi < 2 − ε
where 0 < ε < 1/2.

The modified version of EMOPP is obtained taking in
consideration only the projections of Qj,k on the semi-plans
that contain the polygon and don’t contain the point Qj,k. The
weights are computed with the identical formula, within the
condition

∑
wi = 1 for i ∈ Ik where Ik is that the set of

semi-plans taken into consideration at the k iteration.
Let‘s consider the set of indexes I = {1, 2, ..., n} and the

function f : R2 → R
2:

f(Q) = Q+ λj(
∑
i∈I

wi · pr(Q,PiPi+1)−Q) (3)

where di = dist(Q, pr(Q,PiPi+1)), (Pn+1 = P1) and
pr(·, PiPi+1) is the projection operator onto the PiPi+1 line
and

wi =
1/(di + 1)∑
j∈I 1/(dj + 1)

.

In the case of mEMOPP, the set of indexes I will be replaced
by the set I ′ of indexes i verifying that PiPi+1 separates Q
from the rest of the polygon’s P vertices (Pn+1 = P1)

The convergence of the algorithms is assured by the follow-
ing theorem:

Theorem 1. Consider a sequence of points defined by
Qk+1 = f(Qk) for k ∈ N with Q0 arbitrary fixed outside
the polygon P . If the set of relaxation parameters verifies

1The distances are measured in pixels and the weights {wi,k} are inversely
proportional to {di,k + 1} in order to eliminate the possible division by 0.

662International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

1 < λi < 2 − ε with 0 < ε < 1/2, then for any point
C ∈ int(P):

1) we have

‖Qk+1−C‖2 <= ‖Qk−C‖2−λk(2−λk)
∑
i∈I

wi,kd
2
i,k

(4)
for (mPPM) and

‖Qk+1−C‖2 <= ‖Qk−C‖2−λk(2−λk)
∑
i∈Ik

wi,kd
2
i,k

(5)
for (mEMOPP), where Ik is the set of index i that
PiPi+1 separates Qk from the rest of the polygon’s P
vertices,

2) for both algorithms:

‖Qk+1−Qk‖2 <=
1

ε
(‖Qk−C‖2−‖Qk+1−C‖2), (6)

3) the sum:
∑

k ‖Qk+1 −Qk‖2 <= 1
εdist(Q0,P).

Then the sequence {Qk} converges in norm to some interior
point of P for both mPPM and mEMOPP algorithms.

The demonstration of the theorem follows the step of similar
theorem 2.16 and the corollary 3.16 from [4].

Proof
We note Mk,i = pr(Qk, PiPi+1). The first point is obtained

by the following relations (written here for mPPM algorithm):

‖Qk+1 −C‖2 = ‖Qk −C + λk ·
∑
i∈I

wi,k ·Mk,i −Qk‖2 (7)

= ‖Qk − C‖2 + 2λk

〈
Qk − C,

∑
i∈I

wi,k ·Mk,i −Qj

〉

+λ2
k‖

∑
i∈I

wi,k ·Mk,i −Qk‖2

But

‖
∑
i∈I

wi,k ·Mk,i −Qk)‖2 ≤
∑
i∈I

wi,k · ‖Mk,i −Qk‖2 (8)

and we also have (see [10])

〈Mk,i − C,Mk,i −Qk〉 ≤ 0 (9)

Then 〈
Qk − C,

∑
i∈I

wi,k ·Mk,i −Qk)

〉
≤

−
∑
i∈I

wi,k · ‖Mk,i −Qk‖2 = −
∑
i∈I

wi,kd
2
i,k (10)

The point (1) results from (7), (8) and (10). For the mEMOPP
algorithm, the set of indices I is replaced by Ik.

The second point is obtained by

‖Qk+1 −Qk‖2 = λk‖(
∑
i∈I

wikMk,i −Qk)‖2

≤ λk(
∑
i∈I

wi,k‖Mk,i −Qk)‖2 (11)

≤ λk
‖Qk − C‖2 − ‖Qk+1 − C‖2

λk(2− λk)

≤ 1

ε
(‖Qk − C‖2 − ‖Qk+1 − C‖2)

for any point C interior to the polygon P The third statement
derived from
n∑

k=0

(‖Qk−C‖2−‖Qk+1−C‖2) = ‖Q0−C‖2−‖Qn−C‖2 ≤ ‖Q0−C‖2

(12)
for any C ∈ int(P), then

n∑
k=0

‖Qk+1 −Qk‖2 ≤ 1

ε
dist(Q0,P)

2 (13)

The convergence of Qi is assured by the Corollary 3.3 from
[4].

Note that the convergence depends on the initial distance
from Q0 to the convex polygon and the set {λk}. The
convergence of the algorithms is not assured for λk ≥ 2.

In order to give a more accurate evaluation of the de-
pendence of the algorithms convergence on the relaxation
parameters, we supposed λk → Λ and we proceeded to a
series of numerical experiments, described in the next section.

IV. THE COMPARATIVE ANALYSIS OF THE ALGORITHMS
IMPLEMENTED ON CPU

We first implemented all four PPM, EMOPP, mPPM and
mEMOPP algorithms in C++ using Visual Studio 2015 using
a BGI emulator for graphic representations. In order to visually
test the efficiency and the convergence of the inpainting
process, we have chosen an image of 650x512 pixels that
contains a rectangular region affected by the loss of informa-
tion measuring 50x225 pixels (see Figure 1). The algorithms
were tested using 10240 points outside the damaged region
as starting points, and they where restricted for each starting

(a)

(b)

Fig. 1. (a) The initial image, (b) The damaged images

663International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

Fig. 2. The average number of iterations

point at maximum 45 iteration, eliminate the possible points
where the algorithms do not converge in finite time inside the
convex polygon.

We tested the dependence of the convergence of algorithms
on the relaxation parameter Λ and the capacity of each
algorithm to ”fill” the polygonal shape, property that assures
that the solutions of the convex feasibility problem, depending
on the staring points, cover uniformly the interior of the convex
set.

The implemented algorithms produced a list of iterated
positions (Qj,k) and a short descriptive statistic of number
of iterations executed for each starting points. The results for
the four algorithms are presented in the next table, Table I,
for the relaxation parameters λi = Λ = 1.1.

Because the application of the weight factor depends on
the position of the points, the number of iterations increases
significantly for the case of mPPM algorithm, but not for
the mEMOPP algorithm. The convergence of mEMOPP is
comparable with the case when the weights are constants.

The same experiments were repeated for each value of Λ ∈
{1.1+0.2 · i|i = 1, 5}. (Note that the convergence of the PPM
and EMOPP method are not assured for Λ >= 2 [9].) The
dependence of the number of iterations on the value of Λ is
represented in the Figure 2.

In order to test the ” efficiency ” of the algorithms to
”cover” the entire surface of the convex target, we systematised
the spatial distribution of the solutions obtained for all the
considered algorithms, only for the case of the relaxation
parameter Λ = 1.1, Λ = 1.7 and Λ = 2.0 in Table II. To better
observe the distribution of the inpaited points we limited the
number of starting point to 1000, only for this experiment.

We observed that for small values of Λ, the solutions of the
mPPM, EMOPP and mEMOPP are concentrated near the bor-
ders of the initial convex polygon. For increased Λ, the filled
region becomes larger in the case of these three algorithms.
Only for EMOPP and mEMOPP the entire surface of the
convex set will be covered, for Λ >= 1.9, more efficiently in
the case of mEMOPP. The classical PPM algorithm produces
an inverted copy of the neighborhood of the polygon, centred
in the middle of it.

Note that the inpaintig algorithms described in this paper
can be used efficiently only for covering small damaged region
of an image. The testing area chosen here was relatively large
(225x50 pixels).

Finally we analyzed the dependence of the execution time

on the relaxation parameter Λ. The results are centralized in
the Table III. One remarks that, if the execution time does
not depend significantly on the value of relaxation parameter
Λ for the case of PPM and mPPM algorithms, the EMOPP
and mEMOPP algorithms are faster for Λ = 1.7, 1.9. The
increased values of execution time for Λ = 2.0 are the result
of multiplication of the starting points for which the algorithms
do not converge in finite steps, in the case of mEMOPP.

V. PARALLELIZATION OF THE ABOVE ALGORITHMS

For the algorithms presented in the Section III, we propose
a parallelization method that involves the transfer of the main
iterations from Step 3 to 5 from the CPU execution to GPU,
using an OpenCL language implementation. The specificities
of OpenCL permit the transfer only of float parameters and
simple vectors as pointers, but the iteration from Step 3 can
be executed autonomously for as many points as the number
of the Graphic Card kernels. The main loop of Step 5 uses
at each iteration only the coordinates of the precedent point
and the (fixed) vector of the polygon edges Pi, i = 1..N . The
execution of this Step was distributed between the different
kernels of GPU, strongly reducing the execution time for the
huge number of points (tested for 10240 points) involved by
the algorithms.

The simplified schema of the parallelization method is
presented in Figure 3. The main program was implemented
in C Sharp. For the damaged image, the user can select
a polygonal area that covers the scratch, in our cases the
same rectangular area tested in the precedent section, and the
execution begins with the random generation of starting points
in C Sharp, using a BuldingPoins() procedure .

The processed image was temporary stocked in the shared
CPU/GPU memory using the methods (Mem)CL.CreateBuffer
and
CL.EnqueueWriteBuffer(), and the coordinates of each starting
point were transferred to the same shared memory in the
beginning of the execution. The coordinate of each one of them
becomes input parameters for the iteration procedure (Step
5), entirely implemented in OpenCL using kernel functions.
The OpenCL procedure modifies the temporary image in the
shared memory. At the end, the main program recuperates
the inpainted image by the bias of CL.EnqueueReadBuffer()
method.

Fig. 3. The simplified parallelization schema (I.) The transfer of random
generated starting points, (II.) The transfer of inpainted pixels coordinates

664International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

TABLE I
THE DISTRIBUTION OF THE STARTING POINTS SO THAT THE ALGORITHMS STOP IN k STEPS.

Number Starting points(%) Starting points(%) Starting points(%) Starting points(%)
of iterations for PPM for mPPM for EMOPP for mEMOPP

1 13.35 6.32 48.07 48.78
2 20.28 10.38 2.62 2.18
3 46.22 13.47 1.33 7.47
4 16.24 13.30 1.64 12.51
5 0 11.65 1.50 10.89
6 0 12.07 1.44 3.91
7 0 9.21 1.27 0.93
8 0 6.78 1.15 0.15
9 0 4.74 0.93 0.09

>=10 3.91 12.08 40.05 13.08

To comparatively test the GPU implementation of the four
algorithms, we used a GeForce Super RTX 2070 graphic card
with 2650 cores and a 266-bit memory bus. The comparative
execution times, expressed in milliseconds, for different values
of the relaxation parameter Λ are presented in Table IV.
Comparing also with the execution times for the classical
CPU implementation (Table III), the parallel implementation
was up to 20 times faster. The obtained inpainted images
were very similar to the final image obtained with the C++
implementation.

VI. CONCLUSIONS

The comparative analysis of the graphical implementations
of the PPM, EMOPP and their modified versions proposed in
Section III allows to identify the way that the variable weight
and the relaxation factor Λ influence the number of iterations
calculated until reaching the solution of the convex feasibility
problem. The results of our experiments are in concordance
with the analysis of the effectiveness of projection methods
for convex feasibility problems presented in [7] for the PPM
and EMOPP.

The graphical comparison allows also to verify the spatial
distribution of the solutions, depending on the shape of the
convex polygon and the relaxation factor. Even if the methods
are not efficient in the recovery of a damaged image by
inpainting, in the case of λ � 1.7, 2.1 the polygon is uniformly
covered by the solution points, for EMOPP and mEMOPP.

We choose this type of implementation in order to verify
if the analyzed methods for solving the convex feasibility
problem can be used to recover a damaged image by inpainting
points from the exterior in the affected area. In conclusion,
the EMOPP and mEMOPP method can be better used for
this purpose, but only for small regions affected and a good
choice of relaxation parameter Λ; moreover, the image of
the covered area does not reproduce the neighborhood of the
convex polygon. All the results of this paper are obtained
by numerical experiments, then more theoretical results must
be obtained in order to support the presented analysis of the
convergence of the four algorithms.

As a final conclusion, the parallelization of the algorithms
using a mixed CPU/GPU implementation produces a spectac-
ular incremetation of the execution speed. Parallelization is
recommended, although the results are not always spectacular
from speedup point of view.

REFERENCES

[1] I.M. Artinescu, L.O. Mafteiu-Scai: A Scratch Covering Algorithm using
Affine Projection Method. Mathematics and Computer Sciences, 12(2),
235–246, 2018.

[2] I.M. Artinescu: A comparative analysis of the convergence regions for
different parallel affine projection algorithms. Stud. Univ. Babes-Bolyai
Math., 63(3), 401–411, 2018.

[3] S. Agmon: The relaxation method for linear inequalities. Canadian
Journal of Mathematics, 6, pp. 382–392, 1954.

[4] H.H. Bauschke, J.M. Borwein: On Projection Algorithms for Solving
Convex Feasibility Problems. (SIAM Review) Society for Industrial and
Applied Mathematics Review, 38(3), 367–426, 1996.

[5] M. Bertalmio, G. Sapiro , V. Caselles, C. Ballester: Image inpainting.
ACM Comput. Graph. (SIGGRAPH 2002). In SIGGRAPH: Proceedings
of the 27th annual conference on Computer graphics and interactive
techniques, New Orleans, ACM Press/Addison-Wesley, New York, pp.
417–424,2000.

[6] M. Bertalmio, L. Vese, G. Sapiro, S. Osher: Simultaneous structure and
texture image inpainting. IEEE Transactions on Image Processing, 12, pp.
882–889, 2003.

[7] Y. Censor, W. Chen, P. Combettes, R. David, G. Herman: On the effec-
tiveness of projection methods for convex feasibility problems with linear
inequality constraints. In Computational Optimization and Applications,
Kluwer Academic Publishers Norwell, USA, pp. 1065–1088, 2012

[8] G. Cimmino: Calcolo approssimato per le soluzioni dei sistemi di
equazioni lineari. La Ricerca Scientifica, 1, pp. 326–333, 1938.

[9] P.L. Combettes: The Convex Feasibility Problem in Image Recovery.
Advances in Imaging and Electron Physics, 95, pp. 155–270,1996.

[10] P.L. Combettes: Hilbertian Convex Feasibility Problem: Convergence
of Projection Methods. Applied Mathematics and Optimization, 35, pp.
311–330, 1997a.

[11] P.L. Combettes:Convex set theoretic image recovery by extrapolated
iterations of parallel subgradient projections. IEEE Transactions on
Image Processing , 6(4), pp. 493–506, 1997b.

[12] A. Criminis, P. Perez, K. Toyama: Region Filling and Object Removal
by Exemplar-Based Image Inpainting. Transactions on Image Processing,
13, pp. 1200–1212, 2004.

[13] P. Gilbert: Iterative methods for the three-dimensional reconstruction
of an object from projections. Journal of Theoretical Biology, 36, pp.
105–117, 1972.

[14] R. Gordon, R. Bender, G.T. Herman : Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and X-ray
photography. Journal of Theoretical Biology, 29, pp. 471–481,1970.

[15] L.G. Gubin, B.T. Polyak, E.V. Raik: The method of projections for find-
ing the common point of convex sets. USSR Computational Mathematics
and Mathematical Physics, 7(6), pp. 1–24, 1967.

[16] Y.I. Merzlyakov: On a relaxation method of solving systems of linear in-
equalities. USSR Computational Mathematics and Mathematical Physics,
2, pp. 504–510, 1963.

[17] T.S. Motzkin, I.J. Schoenberg: The relaxation method for linear inequal-
ities. Canadian Journal of Mathematics, 6, pp. 393–404, 1954.

[18] M. Ait Rami , U. Helmke, J.B. Moore: A finite steps algorithm for
solving convex feasibility problems. Journal of Global Optimizations, 38,
pp. 143–160, 2007.

[19] Zhao X.; Hu J.; Yao T. GPU based iterative cone-beam CT reconstruc-
tion using empty space skipping technique. Journal of X-Ray Science and
Technology 2013, pp. 53-69.

665International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

TABLE II
THE FILLED REGIONS DEFINED BY THE SOLUTION OF THE CONVEX FEASIBILITY PROBLEM, FOR DIFFERENT ALGORITHMS AND DIFFERENT VALUES OF Λ

Λ 1.1 1.7 2.0

PPM

mPPM

EMOPP

mEMOPP

666International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:15, No:12, 2021

TABLE III
THE COMPARATIVE EXECUTION TIMES FOR DIFFERENT VALUES OF Λ IN

THE CASE OF GPU IMPLEMENTATION.

Λ PPM mPPM EMOPP mEMOPP
1.1 1069 1041 907 694
1.3 1034 1031 786 754
1.5 1026 1001 851 498
1.7 1018 993 757 540
1.9 997 981 656 529
2.0 1065 991 844 749

TABLE IV
THE COMPARATIVE EXECUTION TIMES FOR DIFFERENT VALUES OF Λ IN

THE CASE OF GPU IMPLEMENTATION.

Λ PPM mPPM EMOPP mEMOPP
1.1 48 64 57 67
1.3 46 63 51 58
1.5 49 59 47 55
1.7 51 53 46 56
1.9 53 56 48 64
2.1 67 61 126 71

[20] T. Zheng, X. Cheng, D. Xiaoyun: A Parallel Depth-Aided Exemplar-
Based Inpainting for Real-Time View Synthesis on GPU. IEEE 10th In-
ternational Conference on High Performance Computing and Communi-
cations and IEEE International Conference on Embedded and Ubiquitous
Computing, pp. 1739–1744,2013.

Powered by TCPDF (www.tcpdf.org)

667International Scholarly and Scientific Research & Innovation 15(12) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
12

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
37

8.
pd

f

http://www.tcpdf.org

