Search results for: computational machining
1191 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model
Authors: S. A. Sadegh Zadeh, C. Kambhampati
Abstract:
Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.
Keywords: All-or-none, computational modelling, mathematical model, transmembrane voltage, action potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621190 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data
Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan
Abstract:
Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14411189 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature
Authors: A. M. Alaskari, S. E. Oraby
Abstract:
The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.
Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13481188 A Fast, Portable Computational Framework for Aerodynamic Simulations
Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo
Abstract:
We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111187 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.
Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34581186 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation
Authors: L. Grinis, V. Haslavsky
Abstract:
Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.
Keywords: Drilling, stuck-pipe, vibration, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26021185 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.
Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131184 Experimental and Computational Analysis of Hygrothermal Performance of an Interior Thermal Insulation System
Authors: Z. Pavlík, J. Kočí, M. Pavlíková, R. Černý
Abstract:
Combined experimental and computational analysis of hygrothermal performance of an interior thermal insulation system applied on a brick wall is presented in the paper. In the experimental part, the functionality of the insulation system is tested at simulated difference climate conditions using a semi-scale device. The measured temperature and relative humidity profiles are used for the calibration of computer code HEMOT that is finally applied for a long-term hygrothermal analysis of the investigated structure.Keywords: Additional thermal insulation, hygrothermal analysis, semi-scale testing, long-term computational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361183 Managing Handheld Devices in Ad-Hoc Collaborative Computing Environments
Authors: Alaa Alwani, Hassan Artail, Haidar Safa, Ayman Abi Abdallah, Bashir Basha, Tarek Abdel Khalek
Abstract:
The noticeable advance in the area of computer technology has paved the way for the invention of powerful mobile devices. However, limited storage, short battery life, and relatively low computational power define the major problems of such devices. Due to the ever increasing computational requirements, such devices may fail to process needed tasks under certain constraints. One of the proposed solutions to this drawback is the introduction of Collaborative Computing, a new concept dealing with the distribution of computational tasks amongst several handhelds. This paper introduces the basics of Collaborative Computing, and proposes a new protocol that aims at managing and optimizing computing tasks in Ad-Hoc Collaborative Computing Environments.
Keywords: Handheld devices, Collaborative Computing, mainprocess, Collaboration Table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15611182 Integrating Agents and Computational Intelligence Techniques in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18781181 Some Computational Results on MPI Parallel Implementation of Dense Simplex Method
Authors: El-Said Badr, Mahmoud Moussa, Konstantinos Paparrizos, Nikolaos Samaras, Angelo Sifaleras
Abstract:
There are two major variants of the Simplex Algorithm: the revised method and the standard, or tableau method. Today, all serious implementations are based on the revised method because it is more efficient for sparse linear programming problems. Moreover, there are a number of applications that lead to dense linear problems so our aim in this paper is to present some computational results on parallel implementation of dense Simplex Method. Our implementation is implemented on a SMP cluster using C programming language and the Message Passing Interface MPI. Preliminary computational results on randomly generated dense linear programs support our results.Keywords: Linear Programming, MPI, Parallel Implementation, Simplex Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20481180 Computational Intelligence Techniques and Agents- Technology in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed e-learning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: Computational Intelligence, E-learning Environments, Intelligent Agents, User Modelling, Bayesian Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631179 Unconventional Calculus Spreadsheet Functions
Authors: Chahid K. Ghaddar
Abstract:
The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.Keywords: Calculus functions, nonlinear systems, differential algebraic equations, solvers, spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24591178 Atomic Force Microscopy (AFM)Topographical Surface Characterization of Multilayer-Coated and Uncoated Carbide Inserts
Authors: Samy E. Oraby, Ayman M. Alaskari
Abstract:
In recent years, scanning probe atomic force microscopy SPM AFM has gained acceptance over a wide spectrum of research and science applications. Most fields focuses on physical, chemical, biological while less attention is devoted to manufacturing and machining aspects. The purpose of the current study is to assess the possible implementation of the SPM AFM features and its NanoScope software in general machining applications with special attention to the tribological aspects of cutting tool. The surface morphology of coated and uncoated as-received carbide inserts is examined, analyzed, and characterized through the determination of the appropriate scanning setting, the suitable data type imaging techniques and the most representative data analysis parameters using the MultiMode SPM AFM in contact mode. The NanoScope operating software is used to capture realtime three data types images: “Height", “Deflection" and “Friction". Three scan sizes are independently performed: 2, 6, and 12 μm with a 2.5 μm vertical range (Z). Offline mode analysis includes the determination of three functional topographical parameters: surface “Roughness", power spectral density “PSD" and “Section". The 12 μm scan size in association with “Height" imaging is found efficient to capture every tiny features and tribological aspects of the examined surface. Also, “Friction" analysis is found to produce a comprehensive explanation about the lateral characteristics of the scanned surface. Configuration of many surface defects and drawbacks has been precisely detected and analyzed.Keywords: SPM AFM contact mode, carbide inserts, scan size, surface defects, surface roughness, PSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72691177 Computational Algorithm for Obtaining Abelian Subalgebras in Lie Algebras
Authors: Manuel Ceballos, Juan Nunez, Angel F. Tenorio
Abstract:
The set of all abelian subalgebras is computationally obtained for any given finite-dimensional Lie algebra, starting from the nonzero brackets in its law. More concretely, an algorithm is described and implemented to compute a basis for each nontrivial abelian subalgebra with the help of the symbolic computation package MAPLE. Finally, it is also shown a brief computational study for this implementation, considering both the computing time and the used memory.Keywords: Solvable Lie algebra, maximal abelian dimension, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12821176 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211175 Integrating E-learning Environments with Computational Intelligence Assessment Agents
Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311174 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment
Authors: Zhao Jing, Bai Yongqing, Shi Qiaofang, Zang Yang, Zhang Huaihao
Abstract:
Advances in software technology enable the computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.
Keywords: Upper-division undergraduate, computer-based learning, laboratory instruction, amides, molecular modeling, spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671173 Study of Flow Behavior of Aqueous Solution of Rhodamine B in Annular Reactor Using Computational Fluid Dynamics
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the flow behavior. CFD modeling was utilized to predict velocity distribution and average velocity in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting the flow characteristics in annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.
Keywords: Annular reactor, computational fluid dynamics (CFD), hydrodynamics, Rhodamine B
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19121172 Interoperable CNC System for Turning Operations
Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case
Abstract:
The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881171 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil
Authors: Vipan Kumar Sohpal, Rajesh K Sharma
Abstract:
Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.
Keywords: Jatropha Curcus, computational analysis, emissions, biofuels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16541170 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.
Keywords: CAM, multi-axis milling machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35811169 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology
Authors: Salah Gariani, Taher Dao, Ahmed Lajili
Abstract:
This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.
Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561168 Simulation of the Airflow Characteristic inside a Hard Disk Drive by Applying a Computational Fluid Dynamics Software
Authors: Chanchal Saha, Huynh Trung Luong, M. H. Aziz, Tharinan Rattanalert
Abstract:
Now-a-days, numbers of simulation software are being used all over the world to solve Computational Fluid Dynamics (CFD) related problems. In this present study, a commercial CFD simulation software namely STAR-CCM+ is applied to analyze the airflow characteristics inside a 2.5" hard disk drive. Each step of the software is described adequately to obtain the output and the data are verified with the theories to justify the robustness of the simulation outcome. This study gives an insight about the accuracy level of the CFD simulation software to compute CFD related problems although it largely depends upon the computer speed. Also this study will open avenues for further research.Keywords: Computational fluid dynamics, Hard disk drive, Meshing, Recirculation filter, and Filter physics parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21611167 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation
Authors: Ashutosh Kumar Singh, Anand Mohan
Abstract:
This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641166 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.
Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7501165 Computational Tool for Techno-Economical Evaluation of Steam/Oxygen Fluidized Bed Biomass Gasification Technologies
Authors: Gabriela-Alina Dumitrel, Teodor Todinca, Carmen Holotescu, Cosmina-Mariana Militaru
Abstract:
The paper presents a computational tool developed for the evaluation of technical and economic advantages of an innovative cleaning and conditioning technology of fluidized bed steam/oxygen gasifiers outlet product gas. This technology integrates into a single unit the steam gasification of biomass and the hot gas cleaning and conditioning system. Both components of the computational tool, process flowsheet and economic evaluator, have been developed under IPSEpro software. The economic model provides information that can help potential users, especially small and medium size enterprises acting in the regenerable energy field, to decide the optimal scale of a plant and to better understand both potentiality and limits of the system when applied to a wide range of conditions.Keywords: biomass, CHP units, economic evaluation, gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901164 Problem Solving Techniques with Extensive Computational Network and Applying in an Educational Software
Abstract:
Knowledge bases are basic components of expert systems or intelligent computational programs. Knowledge bases provide knowledge, events that serve deduction activity, computation and control. Therefore, researching and developing of models for knowledge representation play an important role in computer science, especially in Artificial Intelligence Science and intelligent educational software. In this paper, the extensive deduction computational model is proposed to design knowledge bases whose attributes are able to be real values or functional values. The system can also solve problems based on knowledge bases. Moreover, the models and algorithms are applied to produce the educational software for solving alternating current problems or solving set of equations automatically.Keywords: Educational software, artificial intelligence, knowledge base systems, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931163 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18461162 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.
Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281