
 

 

  
Abstract—The noticeable advance in the area of computer 

technology has paved the way for the invention of powerful mobile 
devices. However, limited storage, short battery life, and relatively 
low computational power define the major problems of such devices. 
Due to the ever increasing computational requirements, such devices 
may fail to process needed tasks under certain constraints. One of the 
proposed solutions to this drawback is the introduction of 
Collaborative Computing, a new concept dealing with the 
distribution of computational tasks amongst several handhelds. This 
paper introduces the basics of Collaborative Computing, and 
proposes a new protocol that aims at managing and optimizing 
computing tasks in Ad-Hoc Collaborative Computing Environments. 
 

Keywords—Handheld devices, Collaborative Computing, main 
process, Collaboration Table.  

I. INTRODUCTION AND RELATED WORK 
INCE their debut back in 1993, handheld devices have  
undergone drastic improvement in processing power, 

storage space, and battery lifetime [1]. Those changes were 
met with an increase in the complexity of most PDA 
applications, thus preserving time and computation 
constraints. Collaborative Computing (CC), originally inspired 
from parallel computing, was the most dominant approach 
deployed in an attempt to evade those constraints. CC applies 
in two distinct ways. The first addresses the lack of 
communication between individuals by building a 
collaborative network and the second is based on resource 
sharing among collaborating computing devices. 

An example is the Pervasive Collaborative Computing 
Environment (PCCE) [2] project that offers an environment 
for supporting scientific collaborations. This environment 
houses various tools needed in collaborations such as a 
synchronous/asynchronous messaging, video conferencing, 
and file sharing/transfer. Such a project constitutes a high 
level of collaboration between individuals via the use of 
computers and wireless technologies. The lower level of 
collaboration on the other hand, exists when a given task is 
divided into smaller parts, distributed amongst a set of 
collaborators, processed, and then reassembled to yield the 
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solved original problem. In addition, another form of this 
collaboration can be viewed when a specific device lacks the 
means to perform a computational job, such as text translation, 
and seeks the help of other devices to insure job completion. 
Several approaches have been proposed to provide aspects 
related to low-level collaboration and include the ones 
discussed in [3], [4], [5], [6], [7], and [8]. 

A compiler-directed remote task execution system was 
proposed in [3] for battery power management on mobile 
devices. Remote process execution was proven in [4] to save 
battery power through experiments that were conducted on 
portable computers. In [5] a model for distributed memory 
management between handhelds and workstations was 
proposed. In this model, inactive memory items (programs 
and data) are moved temporarily to other devices in order to 
make space for large programs. A power-aware cost-based 
distributed computation model is presented in [6] for the 
purpose of fairly allocating computational tasks among mobile 
devices in ad-hoc wireless networks. The use of parallel 
processing is suggested in [7] to overcome the shortage of 
processing power in handheld devices. In the implementation, 
Java message passing was employed in the mobile ad-hoc 
network for task communication. A protocol was suggested in 
[8] for remote execution of processes based on the use of 
multicast for discovering computational resources.  

II. THE PROTOCOL 

A. Scope 
This paper proposes the Collaborative Computing Protocol 

(CCP), which aims at managing the low-level collaboration 
between devices for implementation at the data link layer.  

In this work, we classify the interacting devices into two 
classes: master devices that seek help from others in order to 
solve a certain computational task and slave devices that are 
willing and ready to offer the requested help. Communication 
between master and slaves takes place in an Ad-Hoc 
environment in which the master uses broadcast for slaves 
discovery. In order to come up with the basic block of this 
collaboration protocol, a set of assumptions governs its scope. 
First of all, the protocol is considered to work between 
handhelds of homogenous nature, specifically communicating 
using 802.11 [9] and are synchronized in time. Second, the 
medium is assumed to be reliable, eliminating the burden of 
error checking and packet resending. In addition, security 
issues are of no concerns at the moment since we assume that 
no malicious use of this protocol will be deployed to gratify 
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evil intentions. Finally, the master’s code that is fed to the 
protocol in order to be divided and distributed is assumed to 
be containing parallelizing constructs. One part of this code, 
which is relatively bigger than the others, will be executed at 
the master and we shall call it the main process and will wait 
for all other processes to terminate upon completion. Hence, 
the code of the program to be divided is composed of a 
relatively big chunk to be executed as the main process on the 
master device, and a number of subtasks to be distributed on 
the collaborators. We assume that these subtasks are non 
dependent in order to minimize communication costs, and 
reserve some more complex ones to future work. 

B. Relation to other protocols 
In order to be correctly placed in the TCP/IP stack, relations 

between CCP and other protocols have to be analyzed. First, 
we have to keep in mind that CCP is a protocol used for 
managing the collaboration between handheld devices 
therefore it has to define a number of control messages that 
are communicated using 802.11. To ensure efficiency, CCP 
should be placed at the lowest possible layer in the stack. The 
first idea was to include CCP at the internet layer where it can 
communicate with the Internet Protocol using IP addresses for 
message exchange. However, we realized that in CCP the 
principle motivation that led to the creation of the IP protocol, 
namely unifying the addressing scheme, seems to be of less 
importance. For instance, the user does not need to reference 
the address of the devices since the service offered is based on 
a broadcast discovery of collaborators, and then it is the 
responsibility of the operating system to divide and send tasks 
to other devices. Also, routing decisions and forwarding 
packets are not needed since we are working in a single-hop 
Ad-hoc environment where messages are broadcasted from 
master to slaves and then sent from slaves to master. Finally, 
the model being studied assumes an interaction between 
homogenous devices (using 802.11), thus, one of the 
motivations behind using the Internet Protocol is lost. Hence, 
building the Collaborative Computing protocol does not 
require the use of the IP layer as an essential one, and 
therefore can survive on the data link layer without the need 
of IP addressing and by depending on hardware addressing 
only. The advantage of this approach is that it spares 
developers from worrying about the IP layer and its 

complexity (Fig. 1). 

C. Protocol Description 
CCP defines a number of messages that share a common 

header, which includes six fields: Type, Time To Respond 
(TTR), checksum, Local Process ID (LPID), Remote Process 
ID (RPID), and sender Timestamp. CCP first begins by 
executing the main process of the specified job on the master 
side. After that, a CCP_DISCOVER message, in which the 
LPID field of the header is set to the main process ID, and the 
RPID is set to 0’s, is broadcasted to inspect the availability of 
any neighboring devices. 

The protocol permits any handheld to specify whether it 
would like to accept incoming discovery messages. The ones 
that are willing to help will reply with a CCP_OFFER 
message, whereas others will discard the message. A device 
that doesn’t reply within the TTR time, set in the message, 
will not be considered for collaboration. If no slaves reply, 
then the master device will prompt the user to decide whether 
he wants to execute the job locally or cancel it. In case of 
replies, the offer message is accompanied by a payload 
describing available software and hardware resources. The 
CCP_OFFER sets the LPID to the ID of a newly created 
dummy process that allocates a portion of the slave’s 
resources to be offered. These resources are calculated on the 
slave device as to maintain its basic functionalities and not 
affect any of the currently running processes. The offer 
message also sets the RPID to the ID of the master’s main 
process. If the slave did not receive any message from the 
master within the TTR time, it destroys the previously created 
dummy process thus freeing its resources. 

Upon receiving the offer message, the master will select 
convenient slaves depending on their offers. In addition it will 
create a Collaboration Table (CT) (Fig. 2) that serves to map 
the selected slaves to their assigned tasks. The master’s main 
process ID occupies an entry in the table as LPID and the 
processes on the slaves that are intended for collaboration are 
identified by their unique tuple <RPID, MAC Address>. If on 
a single master device we have more than one task to be 
divided, it is the LPID entry that will uniquely identify the 
group of collaborators working on this job. The first row of 
this group identifies the collaborator that holds the first 
subtask of the main program and so on. For instance, Fig. 2 
illustrates a CT at the master side upon receiving offer 
messages from multiple slaves willing to help in different 
tasks. As we notice two slaves have offered their services to 
help in accomplishing the task with main process 411. These 
latter created dummy processes with ids, respectively, 233 and 
9985. The CT is also useful in assembling the final results 
received from the collaborators, especially when we have 
simultaneous collaborations. 

Having constructed the CT at the master device, this latter 

 

Fig. 2  The Collaboration Table (CT). The 3-tuple <LPID, RPID, MAC> 
defines a unique master-slave collaboration. In this example we have three 
collaborations taking place. Notice that the slave with MAC Address  
0F-08-75-FE-76-6A is participating in two of them. 
  

Fig. 1  Protocol relations. The location of CCP in accordance to other 
protocols. 
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sends a CCP_ACCEPT message as an acknowledgment to the 
selected slaves. The LPID in this message is set to the ID of 
the main process whereas the RPID is set to the ID of the 
dummy process waiting at the slave to be populated by the 
assigned task. Thus, the master’s task is now divided into 
many subparts to be computed independently. The master also 
takes part of the collaboration and handles the bigger portion, 
the main process, hence, favoring slave devices over itself. 

Upon receiving the accept message, a similar CT table is 
constructed on the slave to identify the possibly numerous 
masters that currently require the collaboration of this device. 
After sending the accept message, the master will transmit the 
assigned task to its corresponding slave using a reliable 
protocol such as TCP. The slave now possesses a task that can 
be independently computed without any coordination with the 
master. Therefore the slaves accomplish these tasks and, upon 
success, send a CCP_DONE message to the master notifying 
it about its completion. Following the done message, the result 
is also sent using a reliable protocol. The slaves will not delete 
any accomplished task before receiving a CCP_FIN message 
from the master implying that it has successfully received the 
result. If, on the other hand, the TTR time of the CCP_DONE 
message has expired, the slave will resend the result to the 
master and waits again for a CCP_FIN message. Resending 
the message is necessary since it is possible that the slave 
device goes out of range of the master device temporarily. The 
number of resends is left as an implementation issue leaving 
room for optimizations. Upon receiving the CCP_FIN 
message the slave permanently deletes its assigned task and 
updates its CT, thus freeing the corresponding resources. 
When the master receives all subtasks, it identifies each 
subtask by consulting the CT, specifically the <RPID, MAC 
Address> tuple. 

While the handheld devices are computing their assigned 
tasks, the master may decide to abort the whole job. This 
results in sending a CCP_RESET message to all its slaves to 
avoid any unnecessary computations. Once receiving this 
message the slaves will silently destroy the collaborating 
process and free all the corresponding resources. On the other 
hand, a failure or intentional termination of the process on the 
slave side during the computation will also result in sending a 
CCP_RESET message to the master informing him about the 
lost task. Consulting its CT the master will know which task 
has been lost from the LPID of the CCP_RESET message as 
well as the MAC Address of the sender. The master then 
rescans the neighborhood by sending a new CCP_DISCOVER 
with same header as the one before. If any new collaborators 
are detected, the failed subtask is resent completely to a new 
device or divided further and distributed to new collaborators. 
If on the other hand, no new devices are detected, the master 
will queue this subtask, to be computed locally. 

A mechanism to test the availability of the slaves within the 
transmission range of the master is receiving alive messages, 
CCP_ALIVE, from the slaves periodically. If the master 
doesn’t receive an alive message from a specific slave having 
an entry in the CT, it is assumed that the slave went down or 
out of range, and the same error handling mechanism used 
previously is deployed. 

D. Message Format 
CCP messages (Fig. 3) share a common header as stated in 

the previous section. This part summarizes the function of the 
header fields as well as the purpose of each message type. 

 
1) Header Fields:  
 Type: Specifies the type of the CCP message. 
 TTR: Time To Respond. Time in milliseconds. A bit 

corresponds to 10 milliseconds. 
 Checksum: Error checking mechanism.  
 LPID: Local Process ID. Identifies the process running on 

the source device (master or slave). 
 RPID: Remote Process ID. Identifies the process running 

on the destination device (master or slave). 
 Timestamp: a 32-bit timestamp of the sender device used 

for synchronization purposes. 
 

2) Message Types: 
 CCP_DISCOVER: discovery message broadcasted by the 

master to detect any neighboring handheld devices. 
Payload: empty. 

 CCP_OFFER: offer message sent from slaves to master 
as a response to a CCP_DISCOVER message. The 
message contains information that the slave is willing to 
offer. Payload: software and hardware information. 

 CCP_ACCEPT: accept message sent by the master to a 
subset of the offering slaves. Payload: empty.  

 CCP_DONE: done message sent by the slaves to inform 
the master that they have accomplished their assigned 
tasks. Payload: empty. 

 CCP_FIN: finish message sent by master to slaves as an 
acknowledgment to a done message. Payload: empty. 

 CCP_RESET: error message sent by master or slave to 
indicate a failure. If it is sent by the master, the slave 
should halt its assigned task. On the other hand, if it is 
sent by the slave, the master should send the task to 
another neighbor or execute it locally. Payload: empty. 

 CCP_ALIVE: alive message sent by the master to test if a 
slave is up and in transmission range. Payload: empty. 

III. SIMULATION AND RESULTS 
To illustrate the protocol, we had to implement a simple 

application that summarizes the interaction between 
handhelds. The application was only intended to illustrate the 

 
 
Fig. 3  The CCP Message Format. The message header 
that will be sent using the collaboration. 
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protocol and not implement it, hence providing a simulation of 
it on the application layer. The problem chosen for this 
purpose is a string permutation problem in which a set of 8 
characters are permuted to generate all possible strings. The 
simulation doesn’t support error handling however; it assumes 
that the medium is reliable and that no device will be 
intentionally shut down. To make it more realistic we assume 
that computing one eighth of all the combinations is an atomic 
operation and cannot be furthermore divided, thus simulating 
cases where applications are not fully parallelizable. 

The simulation is carried out by specifying the number of 
neighboring slaves to the master device. Two methods were 
implemented to solve the problem of string permutation. The 
first one insures that the load is balanced between master and 
slaves. The second on the other hand assumes that the slave 
devices have limited capabilities and can only generate a 
certain number of permutations. In our case of 8 characters the 
total number of permutations should be 8! = 40320 entries. In 
the second method of simulation mentioned above we assume 
that a slave can only generate 5040 entries which is one eighth 
of the total number of required strings. Table 1 illustrates the 
time required to compute several fractions of the total entries 
on a single device whereas Fig. 4 illustrates the performance 
of the protocol in terms of the number of slaves. First, let us 
compute the performance gain in terms of speedup factor 
where load balancing takes place. In the case of a single slave, 
both master and slave will have to compute half of the entries. 
According to table 1, 40320 entries are computed in 26100 ms 
whereas with one helping device and with load balancing it 
took 13426 ms (see Figure 4). This implies a speedup factor of 
1.94 and a 49.6% which points to a good performance in the 
case of two devices working in parallel. On the other hand if 
load balancing was not used due to limits in the slave 
resources, it would take 22029 ms to generate all the results 
thus yielding a speedup of 16%, not bad in case we have only 
a single slave with minimal resources. However, Fig. 4 shows 
that in the case of load balancing there is a problem in which 
additional slaves yield the same or slightly worse performance 
when going from 3 to 6 slaves. This is because in the cases of 
3 to 6 slaves the master device is a bottleneck solving always 
one fourth of the entries and the increasing number of slaves 
is worsening performance since communication costs are 
increasing. With 6 and 7 slaves, the two methods converge 
since every device is solving the minimum number of entries. 
In the case of 7 slaves, the results are generated in 3501 ms 
and when considering that a single device takes 3154 ms to 
generate the 5040 entries, one can infer that there is about 
11% of time consumed by communication activities. 
However, this cost is considered a negligible overhead in 
comparison with the performance gain. As a conclusion, 
choosing the distribution method depends on the number of 
collaborators, data size, and communication costs. 

IV. CONTINUING AND FUTURE WORK 
Improving the performance of the protocol by minimizing 

communication costs and optimizing distribution methods is 
still under study. Future works should include security and 
error handling mechanisms as well as more accurate and 
expressive simulations to finally implement and test the 
protocol in real situations.  

 
TABLE I 

RESULTS ON A SINGLE DEVICE 

Fraction of 
total entries Number of generated strings Runtime in 

milliseconds 

1/8 5040 3154 
1/4 10080 6209 
3/8 15120 9423 
1/2 20160 12548 
5/8 25200 15553 
3/4 30240 18456 
7/8 35280 21811 
1 40320 26100 
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Fig. 4  Running time using CCP. 
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