

Abstract—The noticeable advance in the area of computer

technology has paved the way for the invention of powerful mobile
devices. However, limited storage, short battery life, and relatively
low computational power define the major problems of such devices.
Due to the ever increasing computational requirements, such devices
may fail to process needed tasks under certain constraints. One of the
proposed solutions to this drawback is the introduction of
Collaborative Computing, a new concept dealing with the
distribution of computational tasks amongst several handhelds. This
paper introduces the basics of Collaborative Computing, and
proposes a new protocol that aims at managing and optimizing
computing tasks in Ad-Hoc Collaborative Computing Environments.

Keywords—Handheld devices, Collaborative Computing, main
process, Collaboration Table.

I. INTRODUCTION AND RELATED WORK
INCE their debut back in 1993, handheld devices have
undergone drastic improvement in processing power,

storage space, and battery lifetime [1]. Those changes were
met with an increase in the complexity of most PDA
applications, thus preserving time and computation
constraints. Collaborative Computing (CC), originally inspired
from parallel computing, was the most dominant approach
deployed in an attempt to evade those constraints. CC applies
in two distinct ways. The first addresses the lack of
communication between individuals by building a
collaborative network and the second is based on resource
sharing among collaborating computing devices.

An example is the Pervasive Collaborative Computing
Environment (PCCE) [2] project that offers an environment
for supporting scientific collaborations. This environment
houses various tools needed in collaborations such as a
synchronous/asynchronous messaging, video conferencing,
and file sharing/transfer. Such a project constitutes a high
level of collaboration between individuals via the use of
computers and wireless technologies. The lower level of
collaboration on the other hand, exists when a given task is
divided into smaller parts, distributed amongst a set of
collaborators, processed, and then reassembled to yield the

Manuscript received March 30, 2005.
Alaa Alwani, Dr. Haidar Safa, Ayman Abi Abdallah, Bashir Basha, and

Tarek Abdel Khalek are with the Computer Science department at the
American University of Beirut (e-mail: {aba09, hs33, asa28, mib06, tsa10
}@aub.edu.lb).

Dr. Hassan Artail is with the Electrical and Computer Engineering
Department at the American University of Beirut (e-mail: ha27@aub.edu.lb).

P.O.Box: 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon.

solved original problem. In addition, another form of this
collaboration can be viewed when a specific device lacks the
means to perform a computational job, such as text translation,
and seeks the help of other devices to insure job completion.
Several approaches have been proposed to provide aspects
related to low-level collaboration and include the ones
discussed in [3], [4], [5], [6], [7], and [8].

A compiler-directed remote task execution system was
proposed in [3] for battery power management on mobile
devices. Remote process execution was proven in [4] to save
battery power through experiments that were conducted on
portable computers. In [5] a model for distributed memory
management between handhelds and workstations was
proposed. In this model, inactive memory items (programs
and data) are moved temporarily to other devices in order to
make space for large programs. A power-aware cost-based
distributed computation model is presented in [6] for the
purpose of fairly allocating computational tasks among mobile
devices in ad-hoc wireless networks. The use of parallel
processing is suggested in [7] to overcome the shortage of
processing power in handheld devices. In the implementation,
Java message passing was employed in the mobile ad-hoc
network for task communication. A protocol was suggested in
[8] for remote execution of processes based on the use of
multicast for discovering computational resources.

II. THE PROTOCOL

A. Scope
This paper proposes the Collaborative Computing Protocol

(CCP), which aims at managing the low-level collaboration
between devices for implementation at the data link layer.

In this work, we classify the interacting devices into two
classes: master devices that seek help from others in order to
solve a certain computational task and slave devices that are
willing and ready to offer the requested help. Communication
between master and slaves takes place in an Ad-Hoc
environment in which the master uses broadcast for slaves
discovery. In order to come up with the basic block of this
collaboration protocol, a set of assumptions governs its scope.
First of all, the protocol is considered to work between
handhelds of homogenous nature, specifically communicating
using 802.11 [9] and are synchronized in time. Second, the
medium is assumed to be reliable, eliminating the burden of
error checking and packet resending. In addition, security
issues are of no concerns at the moment since we assume that
no malicious use of this protocol will be deployed to gratify

Managing Handheld Devices in Ad-Hoc
Collaborative Computing Environments

Alaa Alwani, Hassan Artail, Haidar Safa, Ayman Abi Abdallah, Bashir Basha, Tarek Abdel Khalek

S

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:1, No:5, 2007

794International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
5,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
22

88
.p

df

evil intentions. Finally, the master’s code that is fed to the
protocol in order to be divided and distributed is assumed to
be containing parallelizing constructs. One part of this code,
which is relatively bigger than the others, will be executed at
the master and we shall call it the main process and will wait
for all other processes to terminate upon completion. Hence,
the code of the program to be divided is composed of a
relatively big chunk to be executed as the main process on the
master device, and a number of subtasks to be distributed on
the collaborators. We assume that these subtasks are non
dependent in order to minimize communication costs, and
reserve some more complex ones to future work.

B. Relation to other protocols
In order to be correctly placed in the TCP/IP stack, relations

between CCP and other protocols have to be analyzed. First,
we have to keep in mind that CCP is a protocol used for
managing the collaboration between handheld devices
therefore it has to define a number of control messages that
are communicated using 802.11. To ensure efficiency, CCP
should be placed at the lowest possible layer in the stack. The
first idea was to include CCP at the internet layer where it can
communicate with the Internet Protocol using IP addresses for
message exchange. However, we realized that in CCP the
principle motivation that led to the creation of the IP protocol,
namely unifying the addressing scheme, seems to be of less
importance. For instance, the user does not need to reference
the address of the devices since the service offered is based on
a broadcast discovery of collaborators, and then it is the
responsibility of the operating system to divide and send tasks
to other devices. Also, routing decisions and forwarding
packets are not needed since we are working in a single-hop
Ad-hoc environment where messages are broadcasted from
master to slaves and then sent from slaves to master. Finally,
the model being studied assumes an interaction between
homogenous devices (using 802.11), thus, one of the
motivations behind using the Internet Protocol is lost. Hence,
building the Collaborative Computing protocol does not
require the use of the IP layer as an essential one, and
therefore can survive on the data link layer without the need
of IP addressing and by depending on hardware addressing
only. The advantage of this approach is that it spares
developers from worrying about the IP layer and its

complexity (Fig. 1).

C. Protocol Description
CCP defines a number of messages that share a common

header, which includes six fields: Type, Time To Respond
(TTR), checksum, Local Process ID (LPID), Remote Process
ID (RPID), and sender Timestamp. CCP first begins by
executing the main process of the specified job on the master
side. After that, a CCP_DISCOVER message, in which the
LPID field of the header is set to the main process ID, and the
RPID is set to 0’s, is broadcasted to inspect the availability of
any neighboring devices.

The protocol permits any handheld to specify whether it
would like to accept incoming discovery messages. The ones
that are willing to help will reply with a CCP_OFFER
message, whereas others will discard the message. A device
that doesn’t reply within the TTR time, set in the message,
will not be considered for collaboration. If no slaves reply,
then the master device will prompt the user to decide whether
he wants to execute the job locally or cancel it. In case of
replies, the offer message is accompanied by a payload
describing available software and hardware resources. The
CCP_OFFER sets the LPID to the ID of a newly created
dummy process that allocates a portion of the slave’s
resources to be offered. These resources are calculated on the
slave device as to maintain its basic functionalities and not
affect any of the currently running processes. The offer
message also sets the RPID to the ID of the master’s main
process. If the slave did not receive any message from the
master within the TTR time, it destroys the previously created
dummy process thus freeing its resources.

Upon receiving the offer message, the master will select
convenient slaves depending on their offers. In addition it will
create a Collaboration Table (CT) (Fig. 2) that serves to map
the selected slaves to their assigned tasks. The master’s main
process ID occupies an entry in the table as LPID and the
processes on the slaves that are intended for collaboration are
identified by their unique tuple <RPID, MAC Address>. If on
a single master device we have more than one task to be
divided, it is the LPID entry that will uniquely identify the
group of collaborators working on this job. The first row of
this group identifies the collaborator that holds the first
subtask of the main program and so on. For instance, Fig. 2
illustrates a CT at the master side upon receiving offer
messages from multiple slaves willing to help in different
tasks. As we notice two slaves have offered their services to
help in accomplishing the task with main process 411. These
latter created dummy processes with ids, respectively, 233 and
9985. The CT is also useful in assembling the final results
received from the collaborators, especially when we have
simultaneous collaborations.

Having constructed the CT at the master device, this latter

Fig. 2 The Collaboration Table (CT). The 3-tuple <LPID, RPID, MAC>
defines a unique master-slave collaboration. In this example we have three
collaborations taking place. Notice that the slave with MAC Address
0F-08-75-FE-76-6A is participating in two of them.

Fig. 1 Protocol relations. The location of CCP in accordance to other
protocols.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:1, No:5, 2007

795International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
5,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
22

88
.p

df

sends a CCP_ACCEPT message as an acknowledgment to the
selected slaves. The LPID in this message is set to the ID of
the main process whereas the RPID is set to the ID of the
dummy process waiting at the slave to be populated by the
assigned task. Thus, the master’s task is now divided into
many subparts to be computed independently. The master also
takes part of the collaboration and handles the bigger portion,
the main process, hence, favoring slave devices over itself.

Upon receiving the accept message, a similar CT table is
constructed on the slave to identify the possibly numerous
masters that currently require the collaboration of this device.
After sending the accept message, the master will transmit the
assigned task to its corresponding slave using a reliable
protocol such as TCP. The slave now possesses a task that can
be independently computed without any coordination with the
master. Therefore the slaves accomplish these tasks and, upon
success, send a CCP_DONE message to the master notifying
it about its completion. Following the done message, the result
is also sent using a reliable protocol. The slaves will not delete
any accomplished task before receiving a CCP_FIN message
from the master implying that it has successfully received the
result. If, on the other hand, the TTR time of the CCP_DONE
message has expired, the slave will resend the result to the
master and waits again for a CCP_FIN message. Resending
the message is necessary since it is possible that the slave
device goes out of range of the master device temporarily. The
number of resends is left as an implementation issue leaving
room for optimizations. Upon receiving the CCP_FIN
message the slave permanently deletes its assigned task and
updates its CT, thus freeing the corresponding resources.
When the master receives all subtasks, it identifies each
subtask by consulting the CT, specifically the <RPID, MAC
Address> tuple.

While the handheld devices are computing their assigned
tasks, the master may decide to abort the whole job. This
results in sending a CCP_RESET message to all its slaves to
avoid any unnecessary computations. Once receiving this
message the slaves will silently destroy the collaborating
process and free all the corresponding resources. On the other
hand, a failure or intentional termination of the process on the
slave side during the computation will also result in sending a
CCP_RESET message to the master informing him about the
lost task. Consulting its CT the master will know which task
has been lost from the LPID of the CCP_RESET message as
well as the MAC Address of the sender. The master then
rescans the neighborhood by sending a new CCP_DISCOVER
with same header as the one before. If any new collaborators
are detected, the failed subtask is resent completely to a new
device or divided further and distributed to new collaborators.
If on the other hand, no new devices are detected, the master
will queue this subtask, to be computed locally.

A mechanism to test the availability of the slaves within the
transmission range of the master is receiving alive messages,
CCP_ALIVE, from the slaves periodically. If the master
doesn’t receive an alive message from a specific slave having
an entry in the CT, it is assumed that the slave went down or
out of range, and the same error handling mechanism used
previously is deployed.

D. Message Format
CCP messages (Fig. 3) share a common header as stated in

the previous section. This part summarizes the function of the
header fields as well as the purpose of each message type.

1) Header Fields:
 Type: Specifies the type of the CCP message.
 TTR: Time To Respond. Time in milliseconds. A bit

corresponds to 10 milliseconds.
 Checksum: Error checking mechanism.
 LPID: Local Process ID. Identifies the process running on

the source device (master or slave).
 RPID: Remote Process ID. Identifies the process running

on the destination device (master or slave).
 Timestamp: a 32-bit timestamp of the sender device used

for synchronization purposes.

2) Message Types:
 CCP_DISCOVER: discovery message broadcasted by the

master to detect any neighboring handheld devices.
Payload: empty.

 CCP_OFFER: offer message sent from slaves to master
as a response to a CCP_DISCOVER message. The
message contains information that the slave is willing to
offer. Payload: software and hardware information.

 CCP_ACCEPT: accept message sent by the master to a
subset of the offering slaves. Payload: empty.

 CCP_DONE: done message sent by the slaves to inform
the master that they have accomplished their assigned
tasks. Payload: empty.

 CCP_FIN: finish message sent by master to slaves as an
acknowledgment to a done message. Payload: empty.

 CCP_RESET: error message sent by master or slave to
indicate a failure. If it is sent by the master, the slave
should halt its assigned task. On the other hand, if it is
sent by the slave, the master should send the task to
another neighbor or execute it locally. Payload: empty.

 CCP_ALIVE: alive message sent by the master to test if a
slave is up and in transmission range. Payload: empty.

III. SIMULATION AND RESULTS
To illustrate the protocol, we had to implement a simple

application that summarizes the interaction between
handhelds. The application was only intended to illustrate the

Fig. 3 The CCP Message Format. The message header
that will be sent using the collaboration.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:1, No:5, 2007

796International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
5,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
22

88
.p

df

protocol and not implement it, hence providing a simulation of
it on the application layer. The problem chosen for this
purpose is a string permutation problem in which a set of 8
characters are permuted to generate all possible strings. The
simulation doesn’t support error handling however; it assumes
that the medium is reliable and that no device will be
intentionally shut down. To make it more realistic we assume
that computing one eighth of all the combinations is an atomic
operation and cannot be furthermore divided, thus simulating
cases where applications are not fully parallelizable.

The simulation is carried out by specifying the number of
neighboring slaves to the master device. Two methods were
implemented to solve the problem of string permutation. The
first one insures that the load is balanced between master and
slaves. The second on the other hand assumes that the slave
devices have limited capabilities and can only generate a
certain number of permutations. In our case of 8 characters the
total number of permutations should be 8! = 40320 entries. In
the second method of simulation mentioned above we assume
that a slave can only generate 5040 entries which is one eighth
of the total number of required strings. Table 1 illustrates the
time required to compute several fractions of the total entries
on a single device whereas Fig. 4 illustrates the performance
of the protocol in terms of the number of slaves. First, let us
compute the performance gain in terms of speedup factor
where load balancing takes place. In the case of a single slave,
both master and slave will have to compute half of the entries.
According to table 1, 40320 entries are computed in 26100 ms
whereas with one helping device and with load balancing it
took 13426 ms (see Figure 4). This implies a speedup factor of
1.94 and a 49.6% which points to a good performance in the
case of two devices working in parallel. On the other hand if
load balancing was not used due to limits in the slave
resources, it would take 22029 ms to generate all the results
thus yielding a speedup of 16%, not bad in case we have only
a single slave with minimal resources. However, Fig. 4 shows
that in the case of load balancing there is a problem in which
additional slaves yield the same or slightly worse performance
when going from 3 to 6 slaves. This is because in the cases of
3 to 6 slaves the master device is a bottleneck solving always
one fourth of the entries and the increasing number of slaves
is worsening performance since communication costs are
increasing. With 6 and 7 slaves, the two methods converge
since every device is solving the minimum number of entries.
In the case of 7 slaves, the results are generated in 3501 ms
and when considering that a single device takes 3154 ms to
generate the 5040 entries, one can infer that there is about
11% of time consumed by communication activities.
However, this cost is considered a negligible overhead in
comparison with the performance gain. As a conclusion,
choosing the distribution method depends on the number of
collaborators, data size, and communication costs.

IV. CONTINUING AND FUTURE WORK
Improving the performance of the protocol by minimizing

communication costs and optimizing distribution methods is
still under study. Future works should include security and
error handling mechanisms as well as more accurate and
expressive simulations to finally implement and test the
protocol in real situations.

TABLE I

RESULTS ON A SINGLE DEVICE

Fraction of
total entries Number of generated strings Runtime in

milliseconds

1/8 5040 3154
1/4 10080 6209
3/8 15120 9423
1/2 20160 12548
5/8 25200 15553
3/4 30240 18456
7/8 35280 21811
1 40320 26100

0

5

10

15

20

25

1 2 3 4 5 6 7
Slave number

Ti
m

e
in

 s
ec

on
ds

w ith Load Balancing
w ithout Load Balancing

Fig. 4 Running time using CCP.

REFERENCES
[1] G. O. Young, “Introduction to Personal Digital Assistants”, J. Peters, Ed.

New York: McGraw-Hill, 1964, pp. 15–64.
[2] D. Agarwal, C. McParland, and M. Perry, "Supporting Collaborative

Computing and Interaction," Proceedings of the Grace Hopper
Celebration of Women in Computing 2002 Conference, October 9-12,
2002, Vancouver, Canada.

[3] U. Kremer, J. Hicks, and J. Rehg, “Compiler-directed remote task
execution for power management,” Workshop on Compilers and
Operating Systems for Low Power, 2000.

[4] Rudenko, P. Reither, G. Popek, and G. Kuenning, “Saving portable
computer battery power through remote process execution,” Mobile
Computing and Communications Review, 2(1), 1998.

[5] Sathiaseelan and T. Radzik, “Using remote memory paging for handheld
devices in a pervasive computing environment,” Asian Journal of
Information Technology 2(1): 08-12, 2003.

[6] L. Shang, R. Dick, and N. Jha, “An economics-based power-aware
protocol for computation distribution in mobile ad-hoc networks,” IEEE
Transactions on Mobile Computing, 3(1): 33-45, 2004.

[7] R. Shepherd, J. Story, and S. Mansoor, “Parallel computation in mobile
systems using Bluetooth Scatternets and Java,” School of Informatics,
University of Wales, Bangor.

[8] S. Patwardhan and S. Pichumani, “Ether: a remote execution service for
mobile devices,” School of Computing, University of Utah.

[9] IEEE Computer Society LAN MAN Standards Committee.Wireless
LAN Medium Access Control (MAC) and PhysicalLayer (PHY)
Specifications. New York, New York, 1997. IEEEStd. 802.11–1997.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:1, No:5, 2007

797International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
5,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
22

88
.p

df

