Search results for: carbon trading volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32931

Search results for: carbon trading volume

32781 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide

Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus

Abstract:

The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.

Keywords: Soybean oil, SC-CO2 extraction, yield, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
32780 Simulation on the Performance of Carbon Dioxide and HFC-125 Heat Pumpsfor Medium-and High-Temperature Heating

Authors: Young-Jin Baikand, Minsung Kim

Abstract:

In order to compare the performance of the carbon dioxide and HFC-125 heat pumps for medium-and high-temperature heating, both heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler were fixed at 40/90°C and 40/150°C.The results shows that the HFC-125 heat pump has 6% higher heating COP than carbon dioxide heat pump when the heat sink exit temperature is fixed at 90ºC, while the latter outperforms the former when the heat sink exit temperature is fixed at 150ºC under the simulation conditions considered in the present study.

Keywords: Carbon dioxide, HFC-125, trans critical, heat pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
32779 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: Boundary conditions, buckling, non-local, the differential transform method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
32778 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
32777 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz

Abstract:

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Keywords: Carbon nanotubes, static friction, dynamic friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
32776 Preparation of Size Controlled Silver on Carbon from E-waste by Chemical and Electro-Kinetic Processes

Authors: Mahmoud A. Rabah

Abstract:

Preparation of size controlled nano-particles of silver catalyst on carbon substrate from e-waste has been investigated. Chemical route was developed by extraction of the metals available in nitric acid followed by treatment with hydrofluoric acid. Silver metal particles deposited with an average size 4-10 nm. A stabilizer concentration of 10- 40 g/l was used. The average size of the prepared silver decreased with increase of the anode current density. Size uniformity of the silver nano-particles was improved distinctly at higher current density no more than 20mA... Grain size increased with EK time whereby aggregation of particles was observed after 6 h of reaction.. The chemical method involves adsorption of silver nitrate on the carbon substrate. Adsorbed silver ions were directly reduced to metal particles using hydrazine hydrate. Another alternative method is by treatment with ammonia followed by heating the carbon loaded-silver hydroxide at 980°C. The product was characterized with the help of XRD, XRF, ICP, SEM and TEM techniques.

Keywords: e-waste, silver catalyst, metals recovery, electrokinetic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
32775 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon  nanotubes (CNTs) have generated great interest for their potential as  reinforcements in high performance cementitious composites. The  main challenge in research is the proper dispersion of carbon  nanotubes in the cement matrix. The present work discusses the role  of dispersion of multiwalled carbon nanotubes (MWCNTs) on the  compressive strength characteristics of hydrated Portland IS 1489  cement paste. Cement-MWCNT composites with different mixing  techniques were prepared by adding 0.2% (by weight) of MWCNTs  to Portland IS 1489 cement. Rectangle specimens of size  approximately 40mm × 40mm ×160mm were prepared and curing of  samples was done for 7, 14, 28 and 35days. An appreciable increase  in compressive strength with both techniques; mixture of MWCNTs  with cement in powder form and mixture of MWCNTs with cement  in hydrated form 7 to 28 days of curing time for all the samples was  observed.

 

Keywords: Carbon Nanotubes, Portland Cement, Composite, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
32774 An Inter-banking Auditing Security Solution for Detecting Unauthorised Financial Transactions entered by Authorised Insiders

Authors: C. A. Corzo, N. Zhang, F. Corzo

Abstract:

Insider abuse has recently been reported as one of the more frequently occurring security incidents, suggesting that more security is required for detecting and preventing unauthorised financial transactions entered by authorised users. To address the problem, and based on the observation that all authorised interbanking financial transactions trigger or are triggered by other transactions in a workflow, we have developed a security solution based on a redefined understanding of an audit workflow. One audit workflow where there is a log file containing the complete workflow activity of financial transactions directly related to one financial transaction (an electronic deal recorded at an e-trading system). The new security solution contemplates any two parties interacting on the basis of financial transactions recorded by their users in related but distinct automated financial systems. In the new definition interorganizational and intra-organization interactions can be described in one unique audit trail. This concept expands the current ideas of audit trails by adapting them to actual e-trading workflow activity, i.e. intra-organizational and inter-organizational activity. With the above, a security auditing service is designed to detect integrity drifts with and between organizations in order to detect unauthorised financial transactions entered by authorised users.

Keywords: Intrusion Detection and Prevention, Authentica-transtionand Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
32773 Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon

Authors: Olayinka Omotosho, Anthony Amori

Abstract:

Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.

Keywords: Zinc chloride, cassava peels, activated carbon, bamboo waste, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
32772 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera

Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim

Abstract:

Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics (CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size (Ø8, Ø10, Ø12, Ø14) and depth (1.2mm, 2.4mm).

Keywords: Non Destructive test (NDT), Thermal characteristic, Thermo graphic Camera, Carbon Fiber Reinforced Plastics (CFRP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
32771 Numerical Simulation of CNT Incorporated Cement

Authors: B. S. Sindu, Saptarshi Sasmal, Smitha Gopinath

Abstract:

Cement, the most widely used construction material is very brittle and characterized by low tensile strength and strain capacity. Macro to nano fibers are added to cement to provide tensile strength and ductility to it. Carbon Nanotube (CNT), one of the nanofibers, has proven to be a promising reinforcing material in the cement composites because of its outstanding mechanical properties and its ability to close cracks at the nano level. The experimental investigations for CNT reinforced cement is costly, time consuming and involves huge number of trials. Mathematical modeling of CNT reinforced cement can be done effectively and efficiently to arrive at the mechanical properties and to reduce the number of trials in the experiments. Hence, an attempt is made to numerically study the effective mechanical properties of CNT reinforced cement numerically using Representative Volume Element (RVE) method. The enhancement in its mechanical properties for different percentage of CNTs is studied in detail.

Keywords: Carbon Nanotubes, Cement composites, Representative Volume Element, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
32770 Carbon Isotope Discrimination, A Tool for Screening of Salinity Tolerance of Genotypes

Authors: Alireza Dadkhah, Mahmoud Ghorbanzadeh- Neghab

Abstract:

This study carried out in order to investigate the effects of salinity on carbon isotope discrimination (Δ) of shoots and roots of four sugar beet cultivars (cv) including Madison (British origin) and three Iranian culivars (7233-P12, 7233-P21 and 7233-P29). Plants were grown in sand culture medium in greenhouse conditions. Plants irrigated with saline water (tap water as control, 50 mM, 150 mM, 250 mM and 350 mM of NaCl + CaCl2 in 5 to 1 molar ratio) from 4 leaves stage for 16 weeks. Carbon isotope discrimination significantly decreased with increasing salinity. Significant differences of Δ between shoot and root were observed in all cvs and all levels of salinity. Madison cv showed lower Δ in shoot and root than other three cvs at all levels of salinity expect control, but cv 7233-P29 had significantly higher Δ values at saline conditions of 150 mM and above. Therefore, Δ might be applicable, as a useful tool, for study of salinity tolerance of sugar beet genotypes.

Keywords: Carbon isotope discrimination, Photosynthesis, Salt stress, Sugar beet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
32769 Solubility of CO2 in Aqueous Solutions of 2- Amino-2-Methyl-1-Propanol at High Pressure

Authors: Azmi Mohd Shariff, Ghulam Murshid, K.K. Lau, Mohammad Azmi Bustam, Faizan Ahamd

Abstract:

Carbon dioxide is one of the major green house gases. It is removed from different streams using amine absorption process. Sterically hindered amines are suggested as good CO2 absorbers. Solubility of carbon dioxide (CO2) was measured in aqueous solutions of 2-Amino-2-methyl-1-propanol (AMP) at temperatures 30 oC, 40 oC and 60 oC. The effect of pressure and temperature was studied over various concentrations of AMP. It has been found that pressure has positive effect on CO2 solubility where as solubility decreased with increasing temperature. Absorption performance of AMP increased with increasing pressure. Solubility of aqueous AMP was compared with mo-ethanolamine (MEA) and the absorption capacity of aqueous solutions of AMP was found to be better.

Keywords: Global warming, Carbon dioxide, Amine, Solubility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
32768 Analysis of Current Mirror in 32nm MOSFET and CNTFET Technologies

Authors: Mohini Polimetla, Rajat Mahapatra

Abstract:

There is need to explore emerging technologies based on carbon nanotube electronics as the MOS technology is approaching its limits. As MOS devices scale to the nano ranges, increased short channel effects and process variations considerably effect device and circuit designs. As a promising new transistor, the Carbon Nanotube Field Effect Transistor(CNTFET) avoids most of the fundamental limitations of the Traditional MOSFET devices. In this paper we present the analysis and comparision of a Carbon Nanotube FET(CNTFET) based 10(A current mirror with MOSFET for 32nm technology node. The comparision shows the superiority of the former in terms of 97% increase in output resistance,24% decrease in power dissipation and 40% decrease in minimum voltage required for constant saturation current. Furthermore the effect on performance of current mirror due to change in chirality vector of CNT has also been investigated. The circuit simulations are carried out using HSPICE model.

Keywords: Carbon Nanotube Field Effect Transistor, Chirality Vector, Current Mirror

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
32767 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3646
32766 Functionalization and Characterization of Carbon Nanotubes/ Polypropylene Nanocomposite

Authors: Mokhtar Awang, Wei-Vern Hor, Ehsan Mohammadpour, M Zaki Abdullah, Faiz Ahmad

Abstract:

Chemical and physical functionalization of multiwalled carbon nanotubes (MWCNT) has been commonly practiced to achieve better dispersion of carbon nanotubes (CNTs) in polymer matrix. This work describes various functionalization methods (acidtreatment, non-ionic surfactant treatment with TritonX-100), fabrication of MWCNT/PP nanocomposites via melt blending and characterization of mechanical properties. Microscopy analysis (FESEM, TEM, XPS) showed effective purification of MWCNTs under acid treatment, and better dispersion under both chemical and physical functionalization techniques combined, in their respective order. Tensile tests showed increase in tensile strength for the nanocomposites that contain MWCNTs up to 2 wt%. A decrease in tensile strength was seen in samples that contain 4 wt% of MWCNTs for both raw and Triton X-100 functionalized, signifying MWCNT degradation/rebundling at composition with higher content of MWCNTs. For the acid-treated MWCNTs, however, the tensile results showed slight improvement even at 4wt%, indicating effective dispersion of MWCNTs.

Keywords: Multi walled carbon nanotube (MWCNT), functionalization, dispersion, nanocomposite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
32765 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: Incorporation of carbon, macrosegregation and microsegregation, solidification, uranium-molybdenum alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
32764 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
32763 Climate Change Effect from Black Carbon Emission: Open Burning of Corn Residues in Thailand

Authors: Kanittha Kanokkanjana, Savitri Garivait

Abstract:

This study focuses on emission of black carbon (BC) from field open burning of corn residues. Real-time BC concentration was measured by Micro Aethalometer from field burning and simulated open burning in a chamber (SOC) experiments. The average concentration of BC was 1.18±0.47 mg/m3 in the field and 0.89±0.63 mg/m3 in the SOC. The deduced emission factor from field experiments was 0.50±0.20 gBC/kgdm, and 0.56±0.33 gBC/kgdm from SOC experiment, which are in good agreement with other studies. In 2007, the total burned area of corn crop was 8,000 ha, resulting in an emission load of BC 20 ton corresponding to 44.5 million kg CO2 equivalent. Therefore, the control of open burning in corn field represents a significant global warming reduction option.

Keywords: Black carbon, corn field residues, global warming, mitigation option

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
32762 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent

Authors: Ali Ghiaseddin , Akram Nemati

Abstract:

In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.

Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
32761 Molecular Dynamics of Fatty Acid Interacting with Carbon Nanotube as Selective Device

Authors: David L. Azevedo, Jordan Del Nero

Abstract:

In this paper we study a system composed by carbon nanotube (CNT) and bundle of carbon nanotube (BuCNT) interacting with a specific fatty acid as molecular probe. Full system is represented by open nanotube (or nanotubes) and the linoleic acid (LA) relaxing due the interaction with CNT and BuCNT. The LA has in his form an asymmetric shape with COOH termination provoking a close BuCNT interaction mainly by van der Waals force field. The simulations were performed by classical molecular dynamics with standard parameterizations. Our results show that these BuCNT and CNT are dynamically stable and it shows a preferential interaction position with LA resulting in three features: (i) when the LA is interacting with CNT and BuCNT (including both termination, CH2 or COOH), the LA is repelled; (ii) when the LA terminated with CH2 is closer to open extremity of BuCNT, the LA is also repelled by the interaction between them; and (iii) when the LA terminated with COOH is closer to open extremity of BuCNT, the LA is encapsulated by the BuCNT. These simulations are part of a more extensive work on searching efficient selective molecular devices and could be useful to reach this goal.

Keywords: Carbon Nanotube, Linoleic Acid, MolecularDynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
32760 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: Embodied carbon footprint, Malaysian green homes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
32759 Effect of adding Supercritical Carbon Dioxide Extracts of Cinnamomum tamala (Bay Leaf) on Nutraceutical Property of Tofu

Authors: Sudip Ghosh, Probir Kumar Ghosh, Paramita Bhattacharjee

Abstract:

Supercritical carbon dioxide extracts of Cinnamomum tamala (bay) leaves obtained at 55°C, 512 bar was found to have appreciable nutraceutical properties and was successfully employed as value-added ingredients in preparation of tofu. The bay leaf formulated tofu sample was evaluated for physicochemical properties (pH, texture analysis and lipid peroxidation), proximate analysis, phytochemical properties (total phenol content, antioxidant properties and total reducing sugar), microbial load and sensory profile analysis for a storage period of ten days, vis-à-vis an experimental control sample. These assays established the superiority of the tofu sample formulated with supercritical carbon dioxide extract of bay leaf over the control sample. Bay leaf extract formulated tofu is a new green functional food with promising nutraceutical benefits. 

Keywords: Cinnamomum tamala, Physicochemical properties Phytochemical properties, Supercritical carbon dioxide extraction, Tofu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
32758 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
32757 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
32756 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah

Abstract:

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Keywords: Biochar, biomass, rubber wood, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
32755 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment

Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng

Abstract:

Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 , 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source. 

Keywords: Aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
32754 Restored CO2 from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift, and Hydrogenation

Authors: R. Jitrwung, K. Krekkeitsakul, C. Kumpidet, J. Tepkeaw, K. Jaikengdee, A. Wannajampa, W. Pathaveekongka

Abstract:

Flue gas discharging from coal fired or gas combustion power plant is containing partially carbon dioxide (CO2). CO2 is a greenhouse gas which has been concerned to the global warming. Carbon Capture Storage and Utilization (CCSU) is a topic which is a tool to deal with this CO2 realization. In this paper, the Flue gas is drawn down from the chimney and filtered then it is compressed to build up the pressure until 8 barg. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA) which is filled with activated carbon. The experiment showed the optimum adsorption pressure at 7 barg at which CO2 can be adsorbed step by step in 1st, 2nd, and 3rd stages obtaining CO2 concentration 29.8, 66.4, and 96.7% respectively. The mixed gas concentration from the last step composed of 96.7% CO2, 2.7% N2 and 0.6% O2. This mixed CO2 product gas obtained from 3 stages PSA contained high concentration of CO2 which is ready to be used for methanol synthesis. The mixed CO2 was experimented in 5-liter methanol synthesis reactor skid by 3 step processes: steam reforming, reverse water gas shift then hydrogenation. The result showed that the ratio of mixed CO2 and CH4 70/30, 50/50, 30/70 and 10/90 yielded methanol 2.4, 4.3, 5.6 and 5.3 L/day and saved 40, 30, 15, and 7% CO2 respectively. The optimum condition (positive in both methanol and CO2 consumption) was mixed CO2/CH4 ratio 47/53% by volume which yielded 4.2 L/day methanol and saved 32% CO2 compared with traditional methanol production from methane steam reforming (5 L/day) but no CO2 consumption.

Keywords: Carbon capture storage and utilization, pressure swing adsorption, reforming, methanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
32753 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
32752 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539