Search results for: sulfide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38

Search results for: sulfide

38 [Ca(2,2'-bipyridine)3]2+ -Montmorillonite: A Potentiometric Sensor for Sulfide ion

Authors: Sunan Payungsak, Atchana Wongchaisuwat, Ladda Meesuk

Abstract:

Sulfide ion (S2-) is one of the most important ions to be monitored due to its high toxicity, especially for aquatic organisms. In this work, [Ca(2,2'-bipyridine)3]2+-intercalated montmorillonite was prepared and used as a sensor to construct a potentiometric electrode to measure sulfide ion in solution. The formation of [Ca(2,2'- bipyridine)3]2+ in montmorillonite was confirmed by Fourier Transform Infrared spectra. The electrode worked well at pH 4-12 and 4-10 in sulfide solution 10-2 M and 10-3 M, respectively, in terms of Nernstian slope. The sensor gave good precision and low cost.

Keywords: 2, 2'-bipyridine complexes, montmorillonite potentiometry, sulfide ion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
37 Removal of Iron from Groundwater by Sulfide Precipitation

Authors: H. Jusoh, N. Sapari, R.Z. Raja Azie

Abstract:

Iron in groundwater is one of the problems that render the water unsuitable for drinking. The concentration above 0.3 mg/L is common in groundwater. The conventional method of removal is by precipitation under oxic condition. In this study, iron removal under anaerobic conditions was examined by batch experiment as a main purpose. The process involved by purging of groundwater samples with H2S to form iron sulfide. Removal up to 83% for 1 mg/L iron solution was achieved. The removal efficiency dropped to 82% and 75% for the higher initial iron concentrations 3.55 and 5.01 mg/L, respectively. The average residual sulfide concentration in water after the process was 25*g/L. The Eh level during the process was -272 mV. The removal process was found to follow the first order reaction with average rate constant of 4.52 x 10-3. The half-life for the concentrations to reduce from initial values was 157 minutes.

Keywords: Anaerobic, chemical kinetics, hydrogen sulfide, iron, rate constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
36 Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo

Abstract:

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.

Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396
35 Chemical Degradation of Dieldrin using Ferric Sulfide and Iron Powder

Authors: Junko Hara, Yoshishige Kawabe, Takeshi Komai, Chihiro Inoue

Abstract:

The chemical degradation of dieldrin in ferric sulfide and iron powder aqueous suspension was investigated in laboratory batch type experiments. To identify the reaction mechanism, reduced copper was used as reductant. More than 90% of dieldrin was degraded using both reaction systems after 29 days. Initial degradation rate of the pesticide using ferric sulfide was superior to that using iron powder. The reaction schemes were completely dissimilar even though the ferric ion plays an important role in both reaction systems. In the case of metallic iron powder, dieldrin undergoes partial dechlorination. This reaction proceeded by reductive hydrodechlorination with the generation of H+, which arise by oxidation of ferric iron. This reductive reaction was accelerated by reductant but mono-dechlorination intermediates were accumulated. On the other hand, oxidative degradation was observed in the reaction with ferric sulfide, and the stable chemical structure of dieldrin was decomposed into water-soluble intermediates. These reaction intermediates have no chemical structure of drin class. This dehalogenation reaction assumes to occur via the adsorbed hydroxyl radial generated on the surface of ferric sulfide.

Keywords: Dieldrin, kinetics, pesticide residue, soil remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
34 Influence and Interaction of Temperature, H2S and pH on Concrete Sewer Pipe Corrosion

Authors: Anna Romanova, Mojtaba Mahmoodian, Morteza A. Alani

Abstract:

Concrete sewer pipes are known to suffer from a process of hydrogen sulfide gas induced sulfuric acid corrosion. This leads to premature pipe degradation, performance failure and collapses which in turn may lead to property and health damage. The above work reports on a field study undertaken in working sewer manholes where the parameters of effluent temperature and pH as well as ambient temperature and concentration of hydrogen sulfide were continuously measured over a period of two months. Early results suggest that effluent pH has no direct effect on hydrogen sulfide build up; on average the effluent temperature is 3.5°C greater than the ambient temperature inside the manhole and also it was observed that hydrogen sulfate concentration increases with increasing temperature.

Keywords: Concrete corrosion, hydrogen sulphide gas, temperature, sewer pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4945
33 Reactive Absorption of Hydrogen Sulfide in Aqueous Ferric Sulfate Solution

Authors: Z. Gholami, M. Torabi Angaji, F. Gholami, S. A. Razavi Alavi

Abstract:

Many commercial processes are available for the removal of H2S from gaseous streams. The desulfurization of gas streams using aqueous ferric sulfate solution as washing liquor is studied. Apart from sulfur, only H2O is generated in the process, and consequently, no waste treatment facilities are required. A distinct advantage of the process is that the reaction of H2S with is so rapid and complete that there remains no danger of discharging toxic waste gas. In this study, the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solution has been studied and design calculations for equipments have been done and effective operation parameters on this process considered. Results show that high temperature and low pressure are suitable for absorption reaction. Variation of hydrogen sulfide concentration and Fe3+ concentration with time in absorption reaction shown that the reaction of ferric sulfate and hydrogen sulfide is first order with respect to the both reactant. At low Fe2(SO4)3 concentration the absorption rate of H2S increase with increasing the Fe2(SO4)3 concentration. At higher concentration a decrease in the absorption rate was found. At higher concentration of Fe2(SO4)3, the ionic strength and viscosity of solution increase remarkably resulting in a decrease of solubility, diffusivity and hence absorption rate.

Keywords: Absorption, Fe2(SO4)3, H2S, Reactive Absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3943
32 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
31 Selective Sulfidation of Copper, Zinc and Nickelin Plating Wastewater using Calcium Sulfide

Authors: K. Soya, N. Mihara, D. Kuchar, M. Kubota, H. Matsuda, T. Fukuta

Abstract:

The present work is concerned with sulfidation of Cu, Zn and Ni containing plating wastewater with CaS. The sulfidation experiments were carried out at a room temperature by adding solid CaS to simulated metal solution containing either single-metal of Ni, Zn and Cu, or Ni-Zn-Cu mixture. At first, the experiments were conducted without pH adjustment and it was found that the complete sulfidation of Zn and Ni was achieved at an equimolar ratio of CaS to a particular metal. However, in the case of Cu, a complete copper sulfidation was achieved at CaS to Cu molar ratio of about 2. In the case of the selective sulfidation, a simulated plating solution containing Cu, Zn and Ni at the concentration of 100 mg/dm3 was treated with CaS under various pH conditions. As a result, selective precipitation of metal sulfides was achieved by a sulfidation treatment at different pH values. Further, the precipitation agents of NaOH, Na2S and CaS were compared in terms of the average specific filtration resistance and compressibility coefficients of metal sulfide slurry. Consequently, based on the lowest filtration parameters of the produced metal sulfides, it was concluded that CaS was the most effective precipitation agent for separation and recovery of Cu, Zn and Ni.

Keywords: Calcium sulfide, Plating Wastewater, Filtrationcharacteristics, Heavy metals, Sulfidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
30 Removal of Hydrogen Sulfide in Terms of Scrubbing Techniques using Silver Nano-Particles

Authors: SeungKyu Shin, Jeong Hyub Ha, Sung Han, JiHyeon Song

Abstract:

Silver nano-particles have been used for antibacterial purpose and it is also believed to have removal of odorous compounds, oxidation capacity as a metal catalyst. In this study, silver nano-particles in nano sizes (5-30 nm) were prepared on the surface of NaHCO3, the supporting material, using a sputtering method that provided high silver content and minimized conglomerating problems observed in the common AgNO3 photo-deposition method. The silver nano-particles were dispersed by dissolving Ag-NaHCO3 into water, and the dispersed silver nano-particles in the aqueous phase were applied to remove inorganic odor compounds, H2S, in a scrubbing reactor. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (SO4 2-) ion increased with time due to the oxidation reaction by silver as a catalyst. Consequently, the experimental results demonstrated that the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts

Keywords: Silver nano-particles, Scrubbing, Oxidation, Hydrogen sulfide, Ammonia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
29 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707
28 Influence of Various Factors on Stability of CoSPc in LPG Sweetening Process

Authors: Ali Samadi Afshar, Hamed Harrafi, S.M.Javad Gharib Zahedi

Abstract:

IFP Group Technology “Sulfrex process" was used in Iran-s South Pars Gas Complex Refineries for removing sulfur compounds such as mercaptans, carbonyl sulfide and hydrogen sulfide, which uses sulfonated cobalt phthalocyanine dispersed in alkaline solution as catalyst. In this technology, catalyst and alkaline solution were used circularly. However the stability of catalyst due to effect of some parameters would reduce with the running of the unit and therefore sweetening efficiency would be decreased. Hence, the aim of this research is study the factors effecting on the stability of catalyst.

Keywords: sulfonated cobalt phthalocyanine, mercaptans, stability, catalyst, sulfur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
27 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots

Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi

Abstract:

The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.

Keywords: Biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
26 Investigating Different Options for Reheating the First Converter Inlet Stream of Sulfur Recovery Units (SRUs)

Authors: H. Ganji, H. R. Mahdipoor, J. Ahmadpanah, H. Naderi

Abstract:

The modified Claus process is the major technology for the recovery of elemental sulfur from hydrogen sulfide. The chemical reactions that can occur in the reaction furnace are numerous and many byproducts such as carbon disulfide and carbon carbonyl sulfide are produced. These compounds can often contribute from 20 to 50% of the pollutants and therefore, should be hydrolyzed in the catalytic converter. The inlet temperature of the first catalytic reactor should be maintained over than 250 °C, to hydrolyze COS and CS2. In this paper, the various configurations for the first converter reheating of sulfur recovery unit are investigated. As a result, the performance of each method is presented for a typical clause unit. The results show that the hot gas method seems to be better than the other methods.

Keywords: Sulfur recovery unit, reaction converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
25 Palladium-Catalyzed Hydrodechlorination for Water Remediation: Catalyst Deactivation and Regeneration

Authors: Dalia Angeles-Wedler, Katrin Mackenzie, Frank-Dieter Kopinke

Abstract:

Palladium-catalyzed hydrodechlorination is a promising alternative for the treatment of environmentally relevant water bodies, such as groundwater, contaminated with chlorinated organic compounds (COCs). In the aqueous phase hydrodechlorination of COCs, Pd-based catalysts were found to have a very high catalytic activity. However, the full utilization of the catalyst-s potential is impeded by the sensitivity of the catalyst to poisoning and deactivation induced by reduced sulfur compounds (e.g. sulfides). Several regenerants have been tested before to recover the performance of sulfide-fouled Pd catalyst. But these only delivered partial success with respect to re-establishment of the catalyst activity. In this study, the deactivation behaviour of Pd/Al2O3 in the presence of sulfide was investigated. Subsequent to total deactivation the catalyst was regenerated in the aqueous phase using potassium permanganate. Under neutral pH condition, oxidative regeneration with permanganate delivered a slow recovery of catalyst activity. However, changing the pH of the bulk solution to acidic resulted in the complete recovery of catalyst activity within a regeneration time of about half an hour. These findings suggest the superiority of permanganate as regenerant in re-activating Pd/Al2O3 by oxidizing Pd-bound sulfide.

Keywords: Deactivation, hydrodechlorination, Pd catalyst, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
24 Carbothermic Reduction of Mechanically Activated Mixtures of Celestite and Carbon

Authors: N.Setoudeh, M. Ali Askari Zamani, N.J.Welham

Abstract:

The effect of dry milling on the carbothermic reduction of celestite was investigated. Mixtures of celestite concentrate (98% SrSO4) and activated carbon (99% carbon) was milled for 1 and 24 hours in a planetary ball mill. Un-milled and milled mixtures and their products after carbothermic reduction were studied by a combination of XRD and TGA/DTA experiments. The thermogravimetric analyses and XRD results showed that by milling celestite-carbon mixtures for one hour, the formation temperature of strontium sulfide decreased from about 720°C (in un-milled sample) to about 600°C, after 24 hours milling it decreased to 530°C. It was concluded that milling induces increasingly thorough mixing of the reactants to reduction occurring at lower temperatures

Keywords: Activated carbon, Celestite, Ball milling, Carbothermic reduction, Strontium sulfide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
23 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.

Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29
22 Zinc Sulfide Concentrates and Optimization of their Roasting in Fluidezed Bed Reactor

Authors: B.S.Boyanov, M.P.Sandalski, K.I.Ivanov

Abstract:

The production of glass, ceramic materials and many non-ferrous metals (Zn, Cu, Pb, etc.), ferrous metals (pig iron) and others is connected with the use of a considerable number of initial solid raw materials. Before carrying out the basic technological processes (oxidized roasting, melting, agglomeration, baking) it is necessary to mix and homogenize the raw materials that have different chemical and phase content, granulometry and humidity. For this purpose zinc sulfide concentrates differing in origin are studied for their more complete characteristics using chemical, X-ray diffraction analyses, DTA and TGA as well as Mössbauer spectroscopy. The phases established in most concentrates are: β-ZnS, mZnS.nFeS, FeS2, CuFeS2, PbS, SiO2 (α-quartz). With the help of the developed by us a Web-based information system for a continued period of time different mix proportions from zinc concentrates are calculated and used in practice (roasting in fluidized bed reactor), which have to conform to the technological requirements of the zinc hydrometallurgical technological scheme.

Keywords: fluidized bed reactor, roasting, Web-based information system, zinc concentrates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
21 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: Counter electrodes, dye-sensitized solar cells, quasisolid state electrolyte, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
20 Pilot-scale Study of Horizontal Anaerobic Digester for Biogas Production using Food Waste

Authors: Yongsei Lee, Hyunsu Park, Youngseob Yu, Heechan Yoo, Sungin Yoo

Abstract:

A horizontal anaerobic digester was developed and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal digester. A mixer of the horizontal digester was designed to easily remove the sediment in the bottom and scum layers on surface in the digester. Experimental result for 120 days of operation of the pilot plant showed a high removal efficiency of 81.2% for organic substance and high stability during the whole operation period were acquired. Also food waste was treated at high organic loading rates over 4 kg•VS/m3∙day and a methane gas production rate of 0.62 m3/kg•VSremoved was accomplished. The biological desulfurization equipment inside the horizontal digester was proven to be an economic and effective method to reduce the biogas desulfurization cost by removing hydrogen sulfide more than 90% without external desulfurization equipments.

Keywords: Biogas, Biological desulfurization, Horizontal anaerobic digester, Korean food waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3071
19 Hydrogen Sulphide Removal Using a Novel Biofilter Media

Authors: Z. M. Shareefdeen, A. Aidan, W.Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams

Abstract:

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Keywords: biofilter media, hydrogen sulphide, pumping station, biofiltration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
18 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array

Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.

Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
17 Bioleaching for Efficient Copper Ore Recovery

Authors: Zh. Karaulova, D. Baizhigitov

Abstract:

At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus acidophilus (S.a.), represent mixed cultures utilized in bacterial oxidation systems. They can stay active in the 20-40 °C temperature range. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33 оC. The growth rate decreased by one-half for each 4-5 °C fall in temperature from 30 °C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (> 600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.

Keywords: Bacterial recovery, copper ore, bioleaching, bacterial inoculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160
16 Spent Caustic Bioregeneration by using Thiobacillus denitrificans Bacteria

Authors: Sayed Reza Hashemi, Amir Heidarinasab

Abstract:

Spent Sulfidic Caustic was biologically treated and regenerated for reusing by Thiobacillus denitrificans bacteria, sulfide content oxidized and RSNa reduced dramatically.PH in this test was 11.8 and no neutralization has been done on spent caustic, so spent caustic as the most difficult of industrial wastes to dispose could be regenerate and reuse instead of disposing to sea or deep wells

Keywords: Spent Caustic, Thiobacillus denitrificans, Bioregeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
15 Ferrites of the MeFe2O4 System (Me – Zn, Cu, Cd) and Their Two Faces

Authors: B. S. Boyanov, A. B. Peltekov, K. I. Ivanov

Abstract:

The ferrites ZnFe2O4, CdFe2O4 and CuFe2O4 are synthesized in laboratory conditions using ceramic technology. Their homogeneity and structure are proven by X-Ray diffraction analysis and Mössbauer spectroscopy. The synthesized ferrites are subjected to strong acid and high temperature leaching with solutions of H2SO4, HCl and HNO3. The results indicate that the highest degree of leaching of Zn, Cd and Cu from the ferrites is achieved by use of HCl. The charging of five zinc sulfide concentrates was optimized using the criterion of minimal amount of zinc ferrite produced when roasting the concentrates in a fluidized bed. The results obtained are interpreted in terms of the hydrometallurgical zinc production and maximum recovery of zinc, copper and cadmium from initial zinc concentrates after their roasting.

Keywords: Hydrometallurgy, inorganic acids, solubility, zinc ferrite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
14 The Using of Mixing Amines in an Industrial Gas Sweetening Plant

Authors: B. Sohbi, M. Meakaff, M. Emtir, M. Elgarni

Abstract:

Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.

Keywords: Natural gas, alkanolamine process, gas sweetening plant, simulation, mixing amines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3814
13 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: Concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343
12 Simultaneous Reaction-Separation in a Microchannel Reactor with the Aid of a Guideline Structure

Authors: Salah Aljbour, Hiroshi Yamada, Tomohiko Tagawa

Abstract:

A microchannel with two inlets and two outlets was tested as a potential reactor to carry out two-phase catalytic phase transfer reaction with phase separation at the exit of the microchannel. The catalytic phase transfer reaction between benzyl chloride and sodium sulfide was chosen as a model reaction. The effect of operational time on the conversion was studied. By utilizing a multiphase parallel flow inside the microchannel reactor with the aid of a guideline structure, the catalytic phase reaction followed by phase separation could be ensured. The organic phase could be separated completely from one exit and part of the aqueous phase was separated purely and could be reused with slightly affecting the catalytic phase transfer reaction.

Keywords: Green engineering, microchannel reactor, multiphase reaction, process intensification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
11 Comparison of Bioleaching of Metals from Spent Petroleum Catalyst Using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

Authors: Haragobinda Srichandan, Ashish Pathak, Dong Jin Kim, Seoung-Won Lee

Abstract:

The present investigation deals with bioleaching of spent petroleum catalyst using At. ferrooxidans and At. thiooxidans. The spent catalyst used in the present study was pretreated with acetone to remove the oily hydrocarbons. FESEM and XPS analysis indicated the presence of metals in sulfide and oxide forms in spent catalyst. Both At. ferrooxidans and At. thiooxidans were found to be highly effective in producing the acid. Bioleaching with At. ferrooxidans and At. thiooxidans led to higher recovery of metals compare to control. During bioleaching similar recoveries of metals were obtained using At. ferrooxidans and At. thiooxidans. This might be due to the presence of metals as soluble oxides and sulphides in the spent catalyst. At the end of bioleaching, about 87-90% Ni, 34% Al, 65-73% Mo and 92-97% V were leached using above bacteria. It is elucidated that bioleaching with At. thiooxidans is comparatively more advantageous due to lower cost of sulphur.  

Keywords: Spent catalyst, At. ferrooxidans, Bioleaching, Metal recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
10 Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Authors: Babajide O. Ogungbesan, Rajneesh Kumar, Mohamed Sassi

Abstract:

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.

Keywords: Atmospheric pressure microwave plasma, gas dissociation, optical emission spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
9 Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents

Authors: M. Tang, S. M. Wen, D. W. Liu

Abstract:

This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate.

Keywords: Serpentine, copper and nickel sulfides, flotation, entrainment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479