Search results for: Dual Mode PI Controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1826

Search results for: Dual Mode PI Controller

1676 MPSO based Model Order Formulation Scheme for Discrete PID Controller Design

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes the novel model order formulation scheme to design a discrete PID controller for higher order linear time invariant discrete systems. Modified PSO (MPSO) based model order formulation technique has used to obtain the successful formulated second order system. PID controller is tuned to meet the desired performance specification by using pole-zero cancellation and proposed design procedures. Proposed PID controller is attached with both higher order system and formulated second order system. System specifications are tabulated and closed loop response is observed for stabilization process. The proposed method is illustrated through numerical examples from literature.

Keywords: Discrete PID controller, Model Order Formulation, Modified Particle Swarm Optimization, Pole-Zero Cancellation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1675 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems

Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu

Abstract:

This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.

Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1674 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
1673 Application of Genetic Algorithm for FACTS-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel

Abstract:

In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
1672 Optimization of the Control Scheme for Human Extremity Exoskeleton

Authors: Yang Li, Xiaorong Guan, Cheng Xu

Abstract:

In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.

Keywords: Human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
1671 Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System

Authors: Narendra Kumar, Sanjiv Kumar

Abstract:

Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.

Keywords: Bus voltage and line current (BVLC), series compensation, sub synchronous resonance (SSR), supplementary controller, eigenvalue investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1670 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: Adaptive control, Centroidal Voronoi Tessellations, composite adaptation, coordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
1669 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1668 2-DOF Observer Based Controller for First Order with Dead Time Systems

Authors: Ashu Ahuja, Shiv Narayan, Jagdish Kumar

Abstract:

This paper realized the 2-DOF controller structure for first order with time delay systems. The co-prime factorization is used to design observer based controller K(s), representing one degree of freedom. The problem is based on H∞ norm of mixed sensitivity and aims to achieve stability, robustness and disturbance rejection. Then, the other degree of freedom, prefilter F(s), is formulated as fixed structure polynomial controller to meet open loop processing of reference model. This model matching problem is solved by minimizing integral square error between reference model and proposed model. The feedback controller and prefilter designs are posed as optimization problem and solved using Particle Swarm Optimization (PSO). To show the efficiency of the designed approach different variety of processes are taken and compared for analysis.

Keywords: 2-DOF, integral square error, mixed sensitivity function, observer based controller, particle swarm optimization, prefilter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
1667 Universal Current-Mode OTA-C KHN Biquad

Authors: Dalibor Biolek, Viera Biolková, Zden─øk Kolka

Abstract:

A universal current-mode biquad is described which represents an economical variant of well-known KHN (Kerwin, Huelsman, Newcomb) voltage-mode filter. The circuit consists of two multiple-output OTAs and of two grounded capacitors. Utilizing simple splitter of the input current and a pair of jumpers, all the basic 2nd-order transfer functions can be implemented. The principle is verified by Spice simulation on the level of a CMOS structure of OTAs.

Keywords: Biquad, current mode, OTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
1666 Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Keywords: Higher order systems, model order formulation, modified particle swarm optimization, PID controller, pole-zero cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5027
1665 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion

Authors: Anton V. Doroshin

Abstract:

This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of the attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.

Keywords: Spacecraft, Attitude Dynamics and Control, Chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1664 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
1663 New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller

Authors: S. A. Mohamed, A. S. Zayed, O. A. Abolaeha

Abstract:

A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.

Keywords: Pole-placement, Minimum variance control, self-tuning control and feedforward control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1662 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
1661 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
1660 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
1659 Analytical Design of IMC-PID Controller for Ideal Decoupling Embedded in Multivariable Smith Predictor Control System

Authors: Le Hieu Giang, Truong Nguyen Luan Vu, Le Linh

Abstract:

In this paper, the analytical tuning rules of IMC-PID controller are presented for the multivariable Smith predictor that involved the ideal decoupling. Accordingly, the decoupler is first introduced into the multivariable Smith predictor control system by a well-known approach of ideal decoupling, which is compactly extended for general nxn multivariable processes and the multivariable Smith predictor controller is then obtained in terms of the multiple single-loop Smith predictor controllers. The tuning rules of PID controller in series with filter are found by using Maclaurin approximation. Many multivariable industrial processes are employed to demonstrate the simplicity and effectiveness of the presented method. The simulation results show the superior performances of presented method in compared with the other methods.

Keywords: Ideal decoupler, IMC-PID controller, multivariable Smith predictor, Maclaurin approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
1658 A Study of Curriculum for a Dual Bachelor’s Degree Including a Teaching Certificate

Authors: Hyeon Seok Kim, Inhoi Lee, Seong Baeg Kim, Kyunghee Ko, Kyung Eon Lee, Dong Sik Kang

Abstract:

In the age of globalization, higher education  institutions attempt to equip students with global competence. In  response, most universities have been developing and running various  international programs. However, teacher education has been a  neglected area in this trend. Therefore, in this study, we suggest a  program that offers a dual bachelor’s degree from both universities  located on different countries, focusing on teacher education  institutions with different policies and regulations of teacher education  programs that may become obstacles to designing a dual degree  program. We discuss a possible way to get a dual degree including a  teaching certificate at a specialized college, college of secondary  education. To be specific, this research presents a way to attain two  diplomas from Jeju National University (JNU) in Korea and Boise  State University (BSU) in the U.S. It attempts to build an effective  plan for students to declare simultaneous degrees at both universities.  From the study, we find that it takes about 5 years to fulfill  requirements for the dual degree at the undergraduate level.

 

Keywords: Dual degree, curriculum, teaching certificate, college of secondary education, international program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1657 Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller

Authors: Nurhani Kasuan, Zakariah Yusuf, Mohd Nasir Taib, Mohd Hezri Fazalul Rahiman, Nazurah Tajuddin, Mohd Azri Abdul Aziz

Abstract:

This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.

Keywords: Fuzzy Logic controller, steam temperature, steam distillation, real time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
1656 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Authors: Elham Amini Boroujeni, Hamid Reza Momeni

Abstract:

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.

Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1655 LQR Control for a Multi-MW Wind Turbine

Authors: Trung-Kien Pham, Yoonsu Nam, Hyungun Kim, Jaehoon Son

Abstract:

This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbine, a set of operating conditions is identified and then a LQR controller is designed for each operating point. The feedback controller gains are then interpolated linearly to get control law for the entire operating region. Besides, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of the method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with that when using PI controller.

Keywords: variable speed variable pitch wind turbine, multi-MW size wind turbine, wind energy conversion system, LQR control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
1654 Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test

Authors: Zhang Lei, Zhan Haiyang, Gu Miao

Abstract:

A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test.

Keywords: Software platform, thermal vacuum test, control and measurement, work mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1653 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive controller, unlike the fixed gain controller, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture can result in an enhanced tracking performance in the presence parametric uncertainties.

Keywords: UAV, quadrotor, model reference adaptive control, LQR control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5561
1652 FPGA Based Longitudinal and Lateral Controller Implementation for a Small UAV

Authors: Hafiz ul Azad, Dragan V.Lazic, Waqar Shahid

Abstract:

This paper presents implementation of attitude controller for a small UAV using field programmable gate array (FPGA). Due to the small size constrain a miniature more compact and computationally extensive; autopilot platform is needed for such systems. More over UAV autopilot has to deal with extremely adverse situations in the shortest possible time, while accomplishing its mission. FPGAs in the recent past have rendered themselves as fast, parallel, real time, processing devices in a compact size. This work utilizes this fact and implements different attitude controllers for a small UAV in FPGA, using its parallel processing capabilities. Attitude controller is designed in MATLAB/Simulink environment. The discrete version of this controller is implemented using pipelining followed by retiming, to reduce the critical path and thereby clock period of the controller datapath. Pipelined, retimed, parallel PID controller implementation is done using rapidprototyping and testing efficient development tool of “system generator", which has been developed by Xilinx for FPGA implementation. The improved timing performance enables the controller to react abruptly to any changes made to the attitudes of UAV.

Keywords: Field Programmable gate array (FPGA), Hardwaredescriptive Language (HDL), PID, Pipelining, Retiming, XilinxSystem Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3188
1651 A Dual Model for Efficiency Evaluation Considering Time Lag Effect

Authors: Yan Shuang Zhang, Taehan Lee, Byung Ho Jeong

Abstract:

A DEA model can generally evaluate the performance using multiple inputs and outputs for the same period. However, it is hard to avoid the production lead time phenomenon some times, such as long-term project or marketing activity. A couple of models have been suggested to capture this time lag issue in the context of DEA. This paper develops a dual-MPO model to deal with time lag effect in evaluating efficiency. A numerical example is also given to show that the proposed model can be used to get efficiency and reference set of inefficient DMUs and to obtain projected target value of input attributes for inefficient DMUs to be efficient.

Keywords: DEA, efficiency, time lag, dual problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
1650 Genetically Optimized TCSC Controller for Transient Stability Improvement

Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel

Abstract:

This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
1649 Automatic Generation Control of Interconnected Power System with Generation Rate Constraintsby Hybrid Neuro Fuzzy Approach

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.

Keywords: Automatic Generation Control (AGC), Dynamic Response, Generation Rate Constraint (GRC), Proportional Integral(PI) Controller, Fuzzy Logic Controller (FLC), Hybrid Neuro-Fuzzy(HNF) Control, MATLAB/SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4131
1648 Neuro Fuzzy and Self Tunging Fuzzy Controller to Improve Pitch and Yaw Control Systems Resposes of Twin Rotor MIMO System

Authors: Thair Sh. Mahmoud, Tang Sai Hong, Mohammed H. Marhaban

Abstract:

In this paper, Neuro-Fuzzy based Fuzzy Subtractive Clustering Method (FSCM) and Self Tuning Fuzzy PD-like Controller (STFPDC) were used to solve non-linearity and trajectory problems of pitch AND yaw angles of Twin Rotor MIMO system (TRMS). The control objective is to make the beams of TRMS reach a desired position quickly and accurately. The proposed method could achieve control objectives with simpler controller. To simplify the complexity of STFPDC, ANFIS based FSCM was used to simplify the controller and improve the response. The proposed controllers could achieve satisfactory objectives under different input signals. Simulation results under MATLAB/Simulink® proved the improvement of response and superiority of simplified STFPDC on Fuzzy Logic Controller (FLC).

Keywords: Fuzzy Subtractive Clustering Method, Neuro Fuzzy, Self Tuning Fuzzy Controller, and Twin Rotor MIMO System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1647 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300