Search results for: Cu/ZnO-based catalyst
95 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine
Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin
Abstract:
This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449294 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.
Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52893 Photocatalytic Detoxification Method for Zero Effluent Discharge in Dairy Industry: Effect of Operational Parameters
Authors: Janhavi Inamdar, S.K. Singh
Abstract:
Laboratory experiments have been performed to investigate photocatalytic detoxification by using TiO2 photocatalyst for treating dairy effluent. Various operational parameters such as catalyst concentration, initial concentration, angle of tilt of solar flat plate reactor and flow rate were investigated. Results indicated that the photocatalytic detoxification process can efficiently treat dairy effluent. Experimental runs with dairy wastewater can be used to identify the optimum operational parameters to perform wastewater degradation on large scale for recycling purpose. Also effect of two different types of reactors on degradation process was analyzed.
Keywords: Photocatalytic detoxification, TiO2 photocatalyst, solar flat plate reactor, Zero effluent discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193692 Steam Gasification of Palm Kernel Shell (PKS): Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products
Authors: M.F. Mohamad, Anita Ramli, S.E.E Misi, S. Yusup
Abstract:
This work presents the hydrogen production from steam gasification of palm kernel shell (PKS) at 700 oC in the presence of 5% Ni/BEA and 5% Fe/BEA as catalysts. The steam gasification was performed in two-staged reactors to evaluate the effect of calcinations temperature and the steam to biomass ratio on the product gas composition. The catalytic activity of Ni/BEA catalyst decreases with increasing calcinations temperatures from 500 to 700 oC. The highest H2 concentration is produced by Fe/BEA (600) with more than 71 vol%. The catalytic activity of the catalysts tested is found to correspond to its physicochemical properties. The optimum range for steam to biomass ratio if found to be between 2 to 4. Excess steam content results in temperature drop in the gasifier which is undesirable for the gasification reactions.Keywords: Hydrogen, Palm Kernel Shell, Steam gasification, Ni/BEA, Fe/BEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223591 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array
Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada
Abstract:
Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as buildingblocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5µm and 200 nm, respectively.UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.
Keywords: Zinc Oxide, nanowall, interference laser, UV lasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208090 Effects of Soybean Methyl Ester on the Performance Characteristics of Compression Ignition Engine
Authors: S. K. Fasogbon, A. A. Asere
Abstract:
Depletion and hazardous gas emissions associated with fossil fuels have caused scientists and global attention to focus on the use of “alternative, eco-friendly substitutes for use in Compression Ignition Engines. In this work, biodiesel was produced by trans-esterification of soybean obtained from a Nigerian market using Sodium Hydroxide (NaOH) as a catalyst.” After the production, the physical properties (specific gravity to kinematic viscosity and net calorific value) of the Soybean-biodiesel produced and petrol diesel obtained from a filling station in Nigeria were determined, and these properties conform to conventional standards (ASTM). A cummins-6V-92TA DDEC diesel (Compression ignition, CI) engine was run on various biodiesel-petrol diesel blends (0/100, 10/90, 20/80, 30/70 and 40/60), the B20 (blend 20/80) was found to be the most satisfactory.
Keywords: Effects, Soybean, Methyl Ester, Performance, compression Ignition Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188189 Modeling Converters during the Warm-up Period for Hydrocarbon Oxidation
Authors: Sanchita Chauhan, V.K. Srivastava
Abstract:
Catalytic converters are used for minimizing the release of pollutants to the atmosphere. It is during the warm-up period that hydrocarbons are seen to be released in appreciable quantities from these converters. In this paper the conversion of a fast oxidizing hydrocarbon propylene is analysed using two numerical methods. The quasi steady state method assumes the accumulation terms to be negligible in the gas phase mass and energy balance equations, however this term is present in the solid phase energy balance. The unsteady state model accounts for the accumulation term to be present in the gas phase mass and energy balance and in the solid phase energy balance. The results derived from the two models for gas concentration, gas temperature and solid temperature are compared.
Keywords: Propylene, catalyst, quasi steady state, unsteady state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159588 Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC) within Operational Research (OR) with Sustainability and Phenomenology
Authors: Al-Salamin Hussain, Elias O. Tembe
Abstract:
Supply chain (SC) is an operational research (OR) approach and technique which acts as catalyst within central nervous system of business today. Without SC, any type of business is at doldrums, hence entropy. SC is the lifeblood of business today because it is the pivotal hub which provides imperative competitive advantage. The paper present a conceptual framework dubbed as Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC).The term Homomorphic is derived from abstract algebraic mathematical term homomorphism (same shape) which also embeds the following mathematical application sets: monomorphisms, isomorphism, automorphisms, and endomorphism. The HCFESC is intertwined and integrated with wide and broad sets of elements.
Keywords: Automorphisms, Homomorphism, Monomorphisms, Supply Chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177787 Mechanical and Chemical Reliability Assessment of Silica Optical Fibres
Authors: Irina Severin, M. Caramihai, K. Chung, G. Tasca, T. Park
Abstract:
The current study has investigated the ageing phenomena of silica optical fibres in relation to water activity which might be accelerated when exposed to a supplementary energy, such as microwaves. A controlled stress by winding fibres onto accurate diameter mandrel was applied. Taking into account that normally a decrease in fibre strength is induced in time by chemical action of water, the effects of cumulative reagents such as: water, applied stress and supplementary energy (microwave) in some cases acted in the opposite manner. The microwave effect as a structural relaxation catalyst appears unexpected, even if the overall gain in fibre strength is not high, but the stress corrosion factor revealed significant increase in certain simulation conditions.Keywords: optical fibres, mechanical testing, aging, microwave, structural relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163186 Informative, Inclusive and Transparent Planning Methods for Sustainable Heritage Management
Authors: Mathilde Kirkegaard
Abstract:
The paper will focus on management of heritage that integrates the local community, and argue towards an obligation to integrate this social aspect in heritage management. By broadening the understanding of heritage, a sustainable heritage management takes its departure in more than a continual conservation of the physicality of heritage. The social aspect, or the local community, is in many govern heritage management situations being overlooked and it is not managed through community based urban planning methods, e.g.: citizen-inclusion, a transparent process, informative and inviting initiatives, etc. Historical sites are often being described by embracing terms such as “ours” and “us”: “our history” and “a history that is part of us”. Heritage is not something static, it is a link between the life that has been lived in the historical frames, and the life that is defining it today. This view on heritage is rooted in the strive to ensure that heritage sites, besides securing the national historical interest, have a value for those people who are affected by it: living in it or visiting it. Antigua Guatemala is a UNESCO-defined heritage site and this site is being ‘threatened’ by tourism, habitation and recreation. In other words: ‘the use’ of the site is considered a threat of the preservation of the heritage. Contradictory the same types of use (tourism and habitation) can also be considered development ability, and perhaps even a sustainable management solution. ‘The use’ of heritage is interlinked with the perspective that heritage sites ought to have a value for people today. In other words, the heritage sites should be comprised of a contemporary substance. Heritage is entwined in its context of physical structures and the social layer. A synergy between the use of heritage and the knowledge about the heritage can generate a sustainable preservation solution. The paper will exemplify this symbiosis with different examples of a heritage management that is centred around a local community inclusion. The inclusive method is not new in architectural planning and it refers to a top-down and bottom-up balance in decision making. It can be endeavoured through designs of an inclusive nature. Catalyst architecture is a planning method that strives to move the process of design solutions into the public space. Through process-orientated designs, or catalyst designs, the community can gain an insight into the process or be invited to participate in the process. A balance between bottom-up and top-down in the development process of a heritage site can, in relation to management measures, be understood to generate a socially sustainable solution. The ownership and engagement that can be created among the local community, along with the use that ultimately can gain an economic benefit, can delegate the maintenance and preservation. Informative, inclusive and transparent planning methods can generate a heritage management that is long-term due to the collective understanding and effort. This method handles sustainable management on two levels: the current preservation necessities and the long-term management, while ensuring a value for people today.
Keywords: Community, intangible, inclusion, planning, heritage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78585 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil
Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap
Abstract:
Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.
Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80884 Polyacrylate Modified Copper Nanoparticles with Controlled Size
Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil
Abstract:
The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.
Keywords: Copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345483 Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles
Authors: T.K. Tan, P.S. Khiew, W.S. Chiu, S.Radiman, R.Abd-Shukor, N.M. Huang, H.N. Lim
Abstract:
In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.
Keywords: Nanostructures, phenol red, zinc oxide, heterogeneous photocatalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317182 Synthesis of Cross-Linked Konjac Glucomannan and Kappa Carrageenan Film with Glutaraldehyde
Authors: Sperisa Distantina, Fadilah Fadilah, Mujtahid Kaavessina
Abstract:
Cross-linked konjac glucomannan and kappa carrageenan film were prepared by chemical crosslinking using glutaraldehyde (GA) as the crosslinking agent. The effect crosslinking on the swelling degree was investigated. Konjac glucomannan and its mixture with kappa carrageenan film was immersed in GA solution and then thermally cured. The obtained cross-linked film was washed and soaked in the ethanol to remove the unreacted GA. The obtained film was air dried at room temperature to a constant weight. The infrared spectra and the value of swelling degree of obtained crosslinked film showed that glucomannan and kappa carrageenan was able to be cross-linked using glutaraldehyde by film immersion and curing method without catalyst. The cross-linked films were found to be pH sensitive, indicating a potential to be used in drug delivery polymer system.Keywords: Crosslinking, glucomannan, carrageenan, swelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253981 Role and Effect of Temperature on LPG Sweetening Process
Authors: Ali Samadi Afshar, Sayed Reaza Hashemi
Abstract:
In the gas refineries of Iran-s South Pars Gas Complex, Sulfrex demercaptanization process is used to remove volatile and corrosive mercaptans from liquefied petroleum gases by caustic solution. This process consists of two steps. Removing low molecular weight mercaptans and regeneration exhaust caustic. Some parameters such as LPG feed temperature, caustic concentration and feed-s mercaptan in extraction step and sodium mercaptide content in caustic, catalyst concentration, caustic temperature, air injection rate in regeneration step are effective factors. In this paper was focused on temperature factor that play key role in mercaptans extraction and caustic regeneration. The experimental results demonstrated by optimization of temperature, sodium mercaptide content in caustic because of good oxidation minimized and sulfur impurities in product reduced.Keywords: Caustic regeneration, demercaptanization, LPG sweetening, mercaptan extraction, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598980 Inflating the Public: A Series of Urban Interventions
Authors: Veronika Antoniou, Rene Carraz, Yiorgos Hadjichristou
Abstract:
The Green Urban Lab took the form of public installations that were placed at various locations in four cities in Cyprus. These installations - through which a series of events, activities, workshops and research took place - were the main tools in regenerating a series of urban public spaces in Cyprus. The purpose of this project was to identify issues and opportunities related to public space and to offer guidelines on how design and participatory democracy improvements could strengthen civil society, while raising the quality of the urban public scene. Giant inflatable structures were injected in important urban fragments in order to accommodate series of events. The design and playful installation generated a wide community engagement. The fluid presence of the installations acted as a catalyst for social interaction. They were accessed and viewed effortlessly and surprisingly, creating opportunities to rediscover public spaces.Keywords: Bottom-up initiatives, creativity, public space, social innovation, urban environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246779 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165178 Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light
Authors: S.K.Kavitha, P.N.Palanisamy
Abstract:
The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out.Keywords: Photocatalysis, Reactive Red 120, Sonophotocatalysis, Sonolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343177 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications
Authors: Sam Rasoulzadeh, Atefeh Mousavi
Abstract:
Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.
Keywords: Heat transfer, solar reactor, fluidized bed reactor, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66276 Chelate Enhanced Modified Fenton Treatment for Polycyclic Aromatic Hydrocarbons Contaminated Soils
Authors: Venny, S. Gan, H. K. Ng
Abstract:
This work focuses on the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil via Fenton treatment coupled with novel chelating agent (CA). The feasibility of chelated modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soils was investigated in laboratory scale batch experiments at natural pH. The effects of adding inorganic and organic CA are discussed. Experiments using different iron catalyst to CA ratios were conducted, resulting in hydrogen peroxide: soil: iron: CA weight ratios that varied from 0.049: 1: 0.072: 0.008 to 0.049: 1: 0.072: 0.067. The results revealed that (1) inorganic CA could provide much higher PAH removal efficiency and (2) most of the proposed CAs were more efficient than commonly utilised CAs even at mild ratio. This work highlights the potential of novel chelating agents in maintaining a suitable environment throughout the Fenton treatment, particularly in soils with high buffer capacity.Keywords: Chelating agent, Fenton, hydroxyl radicals, polycyclic aromatic hydrocarbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188275 Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film
Authors: Kowit Suwannahong, Wipada Sanongra, Jittiporn Kruenate, Sarun Phibanchon, Siriuma Jawjit, Wipawee Khamwichit
Abstract:
The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.
Keywords: Photocatalytic oxidation, Toluene, nano-TiO2/LDPE composite film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259874 High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures
Authors: Ramin Yousefi, Muhamad. Rasat. Muhamad
Abstract:
We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.Keywords: ZnO nano and microstructures, Photoluminescence, Raman, Rectifying behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192173 A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor
Authors: M. Khoshtinat, N. A. S. Amin, I. Noshadi
Abstract:
Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.
Keywords: Dielectric barrier discharge, methane, methanol, partial oxidation, Plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293772 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.
Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174471 Securing Justice: A Critical Analysis of Kenya-s Post 9/11 Security Apparatus
Authors: Peter Ndichu Muriuki
Abstract:
The 9/11 suicide attacks in New York, Washington, D.C., and Pennsylvania, triggered a number of security responses both in the United States of America and other Countries in the World. Kenya, which is an ally and a close partner to North America and Europe, was not left behind. While many states had been parties to numerous terrorism conventions, their response in implementing them had been slow and needed this catalyst. This special case offered a window of opportunity for many “security conscious" regimes in cementing their legal-criminological and political security apparatus. At the international level, the 9/11 case led to the hasty adoption of Security Council resolution 1373 in 2001, which called upon states to adopt wide-ranging and comprehensive steps and strategies to combat international terrorism and to become parties to the relevant international conventions and protocols relating to terrorism. Since then, Kenya has responded with speed in devising social-legal-criminological-political actions.
Keywords: Justice, Policing, Security, Terrorism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166970 Catalytical Effect of Fluka 05120 on Methane Decomposition
Authors: Vidyasagar Shilapuram, Nesrin Ozalp, Anam Waheed
Abstract:
Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.Keywords: Catalysis, Fluka 05120, Hydrogen production, Methane decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189869 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds
Authors: M. S. Khurram, S. A. Memon, S. Khan
Abstract:
Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.
Keywords: Axial voidage, circulating fluidized bed, splash zone, static bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127468 CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha
Authors: D. Salari, A. Niaei, P. Chitsaz Yazdi, M. Derakhshani, S. R. Nabavi
Abstract:
This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section of the reactor. The reaction scheme was involved one primary reaction and 24 secondary reactions. Because of high CPU times in these simulations, parallel processing have been used. In this study the coke formation process in fixed bed and empty tube reactor was simulated and coke in these reactors are compared. In addition, the effect of steam ratio and feed flow rate on coke formation was investigated.Keywords: Coke Formation, CFD Simulation, Fixed Bed, Catalyitic Cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251167 Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Esterand its Diesel Blends
Authors: G Lakshmi Narayana Rao, S Sampath, K Rajagopal
Abstract:
Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analysed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution.
Keywords: Combustion characteristics, diesel engine, emission characteristics, used cooking oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378066 Biodiesel as an Alternative Fuel for Diesel Engines
Authors: F. Halek, A. Kavousi, M. Banifatemi
Abstract:
There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) was investigated in this work. Conditions for esterification process of rapeseed oil were 1.8 % H2SO4 as catalyst, MeOH/oil of molar ratio 2 : 0.1 and reaction temperature 65 °C, for a period of 3h. The yield of methyl ester was > 90 % in 1 h. The amount of FFA was reduced from 93 wt % to less than 2 wt % at the end of the esterification process. The FAME was pureed by neutralization with 1 M sodium hydroxide in water solution at a reaction temperature of 62 °C. The final FAME product met with the biodiesel quality standard, and ASTM D 6751.Keywords: Alternative Fuels, Biodiesel, Fatty Acid, MethylEster, Seed Oil, Transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112