Search results for: nonlinear identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1966

Search results for: nonlinear identification

226 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
225 A Portable Cognitive Tool for Engagement Level and Activity Identification

Authors: T. Teo, S. W. Lye, Y. F. Li, Z. Zakaria

Abstract:

Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that using a developed channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available brain computer interface (BCI) 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring, ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.

Keywords: Neurophysiology, monitoring, EEG, outliers, electroencephalography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
224 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: Grey relational analysis, foreign direct investment, CO2 emissions, China.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
223 Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device

Authors: Smaali Assia, Outemzabet Ratiba, Media El Mahdi, Kadi Mohamed

Abstract:

Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.

Keywords: Doping, oxide, reflectance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
222 Modeling the Country Selection Decision in Retail Internationalization

Authors: A. Hortacsu, A. Tektas

Abstract:

This paper aims to develop a model that assists the international retailer in selecting the country that maximizes the degree of fit between the retailer-s goals and the country characteristics in his initial internationalization move. A two-stage multi criteria decision model is designed integrating the Analytic Hierarchy Process (AHP) and Goal Programming. Ethical, cultural, geographic and economic proximity are identified as the relevant constructs of the internationalization decision. The constructs are further structured into sub-factors within analytic hierarchy. The model helps the retailer to integrate, rank and weigh a number of hard and soft factors and prioritize the countries accordingly. The model has been implemented on a Turkish luxury goods retailer who was planning to internationalize. Actual entry of the specific retailer in the selected country is a support for the model. Implementation on a single retailer limits the generalizability of the results; however, the emphasis of the paper is on construct identification and model development. The paper enriches the existing literature by proposing a hybrid multi objective decision model which introduces new soft dimensions i.e. perceived distance, ethical proximity, humane orientation to the decision process and facilitates effective decision making.

Keywords: Analytic hierarchy process, culture, ethics, goal programming, retail foreign market selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
221 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.

Keywords: Flammable zones, gas pipelines, numerical simulation, wind effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
220 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization

Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das

Abstract:

Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10g at 55°C, 512 bar after 60min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77mg gallic acid/g dry bay leaf), reducing power (0.80mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20mg/ml) and anti-inflammatory potency (IC50 of 1.89mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5mg/ml, respectively

Keywords: Antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3636
219 Identification of Active Phytocomponents in the Ethyl Acetate Extract of Glycosmis pentaphylla Retz. DC by Using GC-MS

Authors: M. Sivakumar, D. Chamundeeswari

Abstract:

Glycosmis pentaphylla is one of the medicinally important plants belonging to the family Rutaceae, commonly known as “Anam or Panal” in Tamil. Traditionally, leaves are useful in fever, hepatopathy, eczema, skin disease, helminthiasis, wounds, and erysipelas. The fruits are sweet and are useful in vitiated conditions of vata, kapha, cough, and bronchitis. The roots are good for facial inflammations, rheumatism, jaundice, and anemia. The preliminary phytochemical investigations indicated the presence of alkaloids, terpenoids, flavonoids, tannins, sugar, glycoside, and phenolic compounds. In the present study, the root part of Glycosmis pentaphylla was used, and the root was collected from Western Ghats of South India. The root was sun/shade dried and pulverized to powder in a mechanical grinder. The powder was successively extracted with various solvents, and the ethyl acetate extract of Glycosmis pentaphylla has been subjected to the GC-MS analysis. Amongst the 46 chemical constituents identified from this plant, three major phytoconstituents were reported for the first time. Marmesin, a furanocumarin compound with the chemical structure 7H-Furo (3,2-G) (1)Benzopyran-7-one,2,3–dihydro–2 - (1-Hydroxy-1methylethyl)-(s) is one of the three compounds identified for the first time at the concentration of 11-60% in ethyl acetate extract of Glycosmis pentaphylla. Others include, Beta.-Fagarine (4.71%) and Paverine (13.08%).

Keywords: Ethyl acetate extract, Glycosmis pentaphylla, GC-MS analysis, phytochemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
218 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
217 Genetic Polymorphism of Main Lactoproteins of Romanian Grey Steppe Breed in Preservation

Authors: Şt. Creangâ, V. Maciuc, A.V. Bâlteanu, S.S. Chelmu

Abstract:

The paper presents a part of the results obtained in a complex research project on Romanian Grey Steppe breed, owner of some remarkable qualities such as hardiness, longevity, adaptability, special resistance to ban weather and diseases and included in the genetic fund (G.D. no. 822/2008.) from Romania. Following the researches effectuated, we identified alleles of six loci, codifying the six types of major milk proteins: alpha-casein S1 (α S1-cz); beta-casein (β-cz); kappa-casein (K-cz); beta-lactoglobulin (β-lg); alpha-lactalbumin (α-la) and alpha-casein S2 (α S2-cz). In system αS1-cz allele αs1-Cn B has the highest frequency (0.700), in system β-cz allele β-Cn A2 ( 0.550 ), in system K-cz allele k-CnA2 ( 0.583 ) and heterozygote genotype AB ( 0.416 ) and BB (0.375), in system β-lg allele β-lgA1 has the highest frequency (0.542 ) and heterozygote genotype AB ( 0.500 ), in system α-la there is monomorphism for allele α-la B and similarly in system αS2-cz for allele αs2-Cn A. The milk analysis by the isoelectric focalization technique (I.E.F.) allowed the identification of a new allele for locus αS1-casein, for two of the individuals under analysis, namely allele called αS1-casein IRV. When experiments were repeated, we noticed that this is not a proteolysis band and it really was a new allele that has not been registered in the specialized literature so far. We identified two heterozygote individuals, carriers of this allele, namely: BIRV and CIRV. This discovery is extremely important if focus is laid on the national genetic patrimony.

Keywords: allele, breed, genetic preservation, lactoproteins, Romanian Grey Steppe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
216 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
215 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee

Abstract:

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Keywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
214 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.

Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
213 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Authors: Lara F. Horani, Shurong Tong

Abstract:

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.

Keywords: Analytic hierarchy process, green product, customer requirements for green design, importance weights for the customer requirements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
212 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

Authors: José Julio de C. Pituba

Abstract:

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Keywords: Damage model, plastic strain, unilateral effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
211 Perceptions of Educators on the Learners’ Youngest Age for the Introduction of ICTs in Schools: A Personality Theory Approach

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

Age ratings are very helpful in providing parents with relevant information for the purchase and use of digital technologies by the children; this is why the non-definition of age ratings for the use of ICTs by children in schools is a major concern; and this problem serves as a motivation for this study whose aim is to examine the factors affecting the perceptions of educators on the learners’ youngest age for the introduction of ICTs in schools. This aim is achieved through two types of research objectives: the identification and design of theories and models on age ratings, and the empirical testing of such theories and models in a survey of educators from the Camperdown district of the South African KwaZulu-Natal province. A questionnaire is used for the collection of the data of this survey whose validity and reliability is checked in SPSS prior to its descriptive and correlative quantitative analysis. The main hypothesis supporting this research is the association between the demographics of educators, their personality, and their perceptions on the learners’ youngest age for the introduction of ICTs in schools; as claimed by existing research; except that the present study looks at personality from three dimensions: self-actualized personalities, fully functioning personalities, and healthy personalities. This hypothesis was fully confirmed by the empirical study conducted by this research except for the demographic factor where only the educators’ grade or class was found to be associated with the personality of educators.

Keywords: Age ratings, Educators, E-learning, Personality Theories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
210 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho

Abstract:

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
209 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification

Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff

Abstract:

The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.

Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
208 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: Flux limiters, MILES, OpenFOAM, turbulence structures, TVD schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
207 An Inter-banking Auditing Security Solution for Detecting Unauthorised Financial Transactions entered by Authorised Insiders

Authors: C. A. Corzo, N. Zhang, F. Corzo

Abstract:

Insider abuse has recently been reported as one of the more frequently occurring security incidents, suggesting that more security is required for detecting and preventing unauthorised financial transactions entered by authorised users. To address the problem, and based on the observation that all authorised interbanking financial transactions trigger or are triggered by other transactions in a workflow, we have developed a security solution based on a redefined understanding of an audit workflow. One audit workflow where there is a log file containing the complete workflow activity of financial transactions directly related to one financial transaction (an electronic deal recorded at an e-trading system). The new security solution contemplates any two parties interacting on the basis of financial transactions recorded by their users in related but distinct automated financial systems. In the new definition interorganizational and intra-organization interactions can be described in one unique audit trail. This concept expands the current ideas of audit trails by adapting them to actual e-trading workflow activity, i.e. intra-organizational and inter-organizational activity. With the above, a security auditing service is designed to detect integrity drifts with and between organizations in order to detect unauthorised financial transactions entered by authorised users.

Keywords: Intrusion Detection and Prevention, Authentica-transtionand Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
206 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
205 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: Artificial neural networks, digital image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
204 Turbine Follower Control Strategy Design Based on Developed FFPP Model

Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa

Abstract:

In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.

Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
203 A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Authors: Ke Zhao, Ballarat Colin Richardson, Jerry Courvisanos, John Crawford

Abstract:

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Keywords: Agricultural water, Macroeconomic dynamics, Modeling, Investment dynamics, Sustainability, Unemployment, Economics, Keynesian, Kaleckian.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
202 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
201 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
200 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
199 Cytotoxic Effect of Crude Extract of Sea Pen Virgularia gustaviana on HeLa and MDA-MB-231 Cancer Cell Lines

Authors: Sharareh Sharifi, Pargol Ghavam Mostafavi, Ali Mashinchian Moradi, Mohammad Hadi Givianrad, Hassan Niknejad

Abstract:

Marine organisms such as soft coral, sponge, ascidians, and tunicate containing rich source of natural compound have been studied in last decades because of their special chemical compounds with anticancer properties. The aim of this study was to investigate anti-cancer property of ethyl acetate extracted from marine sea pen Virgularia gustaviana found from Persian Gulf coastal (Bandar Abbas). The extraction processes were carried out with ethyl acetate for five days. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) were used for qualitative identification of crude extract. The viability of HeLa and MDA-Mb-231 cancer cells was investigated using MTT assay at the concentration of 25, 50, and a 100 µl/ml of ethyl acetate is extracted. The crude extract of Virgularia gustaviana demonstrated ten fractions with different Retention factor (Rf) by TLC and Retention time (Rt) evaluated by HPLC. The crude extract dose-dependently decreased cancer cell viability compared to control group. According to the results, the ethyl acetate extracted from Virgularia gustaviana inhibits the growth of cancer cells, an effect which needs to be further investigated in the future studies.

Keywords: Virgularia gustaviana, Cembrane Diterpene, anti-cancer, HeLa cancer Cell, MDA-Md-231 Cancer cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
198 Improvement of Voltage Profile of Grid Integrated Wind Distributed Generation by SVC

Authors: Fariba Shavakhi Zavareh, Hadi Fotoohabadi, Reza Sedaghati

Abstract:

Due to the continuous increment of the load demand, identification of weaker buses, improvement of voltage profile and power losses in the context of the voltage stability problems has become one of the major concerns for the larger, complex, interconnected power systems. The objective of this paper is to review the impact of Flexible AC Transmission System (FACTS) controller in Wind generators connected electrical network for maintaining voltage stability. Wind energy could be the growing renewable energy due to several advantages. The influence of wind generators on power quality is a significant issue; non uniform power production causes variations in system voltage and frequency. Therefore, wind farm requires high reactive power compensation; the advances in high power semiconducting devices have led to the development of FACTS. The FACTS devices such as for example SVC inject reactive power into the system which helps in maintaining a better voltage profile. The performance is evaluated on an IEEE 14 bus system, two wind generators are connected at low voltage buses to meet the increased load demand and SVC devices are integrated at the buses with wind generators to keep voltage stability. Power flows, nodal voltage magnitudes and angles of the power network are obtained by iterative solutions using MIPOWER.

Keywords: Voltage Profile, FACTS Device, SVC, Distributed Generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
197 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany

Abstract:

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

Keywords: Strongback System, Near-fault, Seismic fragility, Uncertainty, IDA, Probabilistic performance assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588