Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32586
Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen


Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: Flux limiters, MILES, OpenFOAM, turbulence structures, TVD schemes.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042


[1] Boris, J., et al., New insights into large eddy simulation. Fluid dynamics research, 1992. 10(4-6): p. 199-228.
[2] Grinstein, F. F. and C. Fureby. Recent progress on flux-limiting based implicit Large Eddy Simulation. in European Conference on Computational Fluid Dynamics, ECCOMAS CFD. 2006.
[3] Lee, M. and R. D. Moser, Direct numerical simulation of turbulent channel flow up to $\mathit {Re} _ {{\it\tau}}\approx 5200$. Journal of fluid mechanics, 2015. 774: p. 395-415.
[4] Abe, H., H. Kawamura, and Y. Matsuo, Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. Journal of fluids Engineering, 2001. 123(2): p. 382-393.
[5] Kim, J., P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of fluid mechanics, 1987. 177: p. 133-166.
[6] Grinstein, F. F. and C. Fureby, On monotonically integrated large eddy simulation of turbulent flows based on FCT algorithms, in Flux-Corrected Transport. 2005, Springer. p. 79-104.
[7] Adedoyin, A.A., D.K. Walters, and S. Bhushan, Investigation of turbulence model and numerical scheme combinations for practical finite-volume large eddy simulations. Engineering Applications of Computational Fluid Mechanics, 2015. 9(1): p. 324-342.
[8] Fureby, C. and F.F. Grinstein, Large eddy simulation of high-Reynolds-number free and wall-bounded flows. Journal of Computational Physics, 2002. 181(1): p. 68-97.
[9] Van Leer, B., Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 1974. 14(4): p. 361-370.
[10] Roe, P. L., Characteristic-based schemes for the Euler equations. Annual review of fluid mechanics, 1986. 18(1): p. 337-365.
[11] Hussain, A. and W. Reynolds, Measurements in fully developed turbulent channel flow. Journal of fluids Engineering, 1975. 97(4): p. 568-578.
[12] Harimi, I. and A. R. Pishevar, Evaluating the capability of the flux-limiter schemes in capturing strong shocks and discontinuities. Shock and Vibration, 2013. 20(2): p. 287-296.