Search results for: equilibrium stage model
6621 Discrete Modified Internal Model Control for a nth-order Plant with an Integrator and Dead-time
Authors: Manato Ono, Hiromitsu Ogawa, Naohiro Ban, Yoshihisa Ishida
Abstract:
This paper deals with a design method of a discrete modified Internal Model Control (IMC) for a plant with an integrator and dead time. If there is a load disturbance in the input or output side of the plant, the proposed control system can eliminate the steady-state error caused by it. The disturbance compensator in this method is simple and its order is low regardless of that of a plant. The simulation studies show that the proposed method has superior performance for a load disturbance rejection and robustness.Keywords: Internal Model Control, Smith Predictor, Dead time, Integrator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16616620 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)
Authors: A. Shamsi, N. Choupani
Abstract:
Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27296619 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23046618 Developing an Audit Quality Model for an Emerging Market
Authors: Bita Mashayekhi, Azadeh Maddahi, Arash Tahriri
Abstract:
The purpose of this paper is developing a model for audit quality, with regard to the contextual and environmental attributes of the audit profession in Iran. For this purpose, using an exploratory approach, and because of the special attributes of the auditing profession in Iran in terms of the legal environment, regulatory and supervisory mechanisms, audit firms size, and etc., we used grounded theory approach as a qualitative research method. Therefore, we got the opinions of the experts in the auditing and capital market areas through unstructured interviews. As a result, the authors revealed the determinants of audit quality, and by using these determinants, developed an Integrated Audit Quality Model, including causal conditions, intervening conditions, context, as well as action strategies related to AQ and their consequences. In this research, audit quality is studied using a systemic approach. According to this approach, the quality of inputs, processes, and outputs of auditing determines the quality of auditing, therefore, the quality of all different parts of this system is considered.Keywords: Audit quality, integrated audit quality model, audit supply, demand for audit service, grounded theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12846617 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.
Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14576616 Technology Adoption among Small and Medium Enterprises (SME's): A Research Agenda
Authors: Ramayah Thurasamy, Osman Mohamad, Azizah Omar, Malliga Marimuthu
Abstract:
This paper presents the research agenda that has been proposed to develop an integrated model to explain technology adoption of SMEs in Malaysia. SMEs form over 90% of all business entities in Malaysia and they have been contributing to the development of the nation. Technology adoption has been a thorn issue among SMEs as they require big outlay which might not be available to the SMEs. Although resource has been an issue among SMEs they cannot lie low and ignore the technological advancements that are taking place at a rapid pace. With that in mind this paper proposes a model to explain the technology adoption issue among SMEs.
Keywords: Technology adoption, integrated model, Small and Medium Enterprises (SME), Malaysia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25076615 Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles
Authors: Zenaide Carvalho da Silva, Andrey Ricardo Pimentel, Leandro Rodrigues Ferreira
Abstract:
Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.
Keywords: Adaptation, interface, learning styles, learning objects, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5406614 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident
Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang
Abstract:
In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.
Keywords: PWR, TRACE, SBO, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7706613 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System
Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami
Abstract:
There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.
Keywords: ARMAX, Dynamic systems, MGT, Prediction, Rail degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10686612 Characterization and Modeling of Packet Loss of a VoIP Communication
Authors: L. Estrada, D. Torres, H. Toral
Abstract:
In this work, a characterization and modeling of packet loss of a Voice over Internet Protocol (VoIP) communication is developed. The distributions of the number of consecutive received and lost packets (namely gap and burst) are modeled from the transition probabilities of two-state and four-state model. Measurements show that both models describe adequately the burst distribution, but the decay of gap distribution for non-homogeneous losses is better fit by the four-state model. The respective probabilities of transition between states for each model were estimated with a proposed algorithm from a set of monitored VoIP calls in order to obtain representative minimum, maximum and average values for both models.Keywords: Packet loss, gap and burst distribution, Markovchain, VoIP measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18686611 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis
Authors: Sidi Yang, Haiyi Zhang
Abstract:
Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.
Keywords: Text mining, Twitter, topic model, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18146610 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7106609 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils
Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong
Abstract:
This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.Keywords: Surface water, groundwater observation, irrigation, water balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18376608 A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm
Authors: Jae Kyung Son, Wan Shik Jang, Sung hyun Shim, Yoon Gyung Sung
Abstract:
This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.
Keywords: Vision control algorithm, location of obstacle region, range of obstacle region, point placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14046607 A Bi-Objective Model to Address Simultaneous Formulation of Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering has been increasingly addressed within last decades as an approach to improve the project execution costs. Therefore, we have taken the problem into consideration in this paper, aiming to maximize schedules quality robustness, in addition to minimize the relevant costs. In this regard, a bi-objective mathematical model is developed to formulate the problem. Moreover, it is possible to utilize the all-unit discount for materials purchasing. The problem is then solved by the E-constraint method, and the Pareto front is obtained for a variety of robustness values. The applicability and efficiency of the proposed model is tested by different numerical instances, finally.Keywords: E-constraint method, material ordering, project management, project scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20196606 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.
Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19206605 2-D Ablated Plasma Production Process for Pulsed Ion Beam-Solid Target Interaction
Authors: Thanat Rungsirathana, Vorathit Rungsetthaphat, Shogo Azuma, Nobuhiro Harada
Abstract:
This paper presents a 2-D hydrodynamic model of the ablated plasma when irradiating a 50 μm Al solid target with a single pulsed ion beam. The Lagrange method is used to solve the moving fluid for the ablated plasma production and formation mechanism. In the calculations, a 10-ns-single-pulsed of ion beam with a total energy density of 120 J/cm2, is used. The results show that the ablated plasma was formed after 2 ns of ion beam irradiation and it started to expand right after 4-6 ns. In addition, the 2-D model give a better understanding of pulsed ion beam-solid target ablated plasma production and expansion process clearer.
Keywords: Ablated plasma, pulse ion beam, thin foil solid target, two-dimensional model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14566604 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 1- Modelling
Authors: Faraj El Dabee, Romeo Marian, Yousef Amer
Abstract:
Just-In-Time (JIT) is a lean manufacturing tool, which provides the benefits of efficiency, and of minimizing unnecessary costs for many organisations. However, the risks arising from these benefits have been disregarded. These risks impact on system processes disrupting the whole supply chain. This paper proposes an inventory model that can simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. Some results that will be illustrated in the second part of this paper are presented.
Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16566603 On the Mathematical Model of Vascular Endothelial Growth Connected with a Tumor Proliferation
Authors: N. Khatiashvili, Ch. Pirumova, V. Akhobadze
Abstract:
In the paper the mathematical model of tumor growth is considered. New capillary network formation, which supply cancer cells with the nutrients, is taken into the account. A formula estimating a tumor growth in connection with the number of capillaries is obtained.Keywords: Differential Equations, Mathematical Models, Vascular Endothelial, Tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12296602 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: Data Assimilation, Parallel Algorithm, GPU architectures, Ocean Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20146601 Emergency Health Management at a South African University
Authors: R. Tandlich, S. Hoossein, K. A. Tagwira, M. M. Marais, T. A. Ludwig, R. P. Chidziva, M. N. Munodawafa, W. M. Wrench
Abstract:
Response to the public health-related emergencies is analysed here for a rural university in South Africa. The structure of the designated emergency plan covers all the phases of the disaster management cycle. The plan contains elements of the vulnerability model and the technocratic model of emergency management. The response structures are vertically and horizontally integrated, while the planning contains elements of scenario-based and functional planning. The available number of medical professionals at the Rhodes University, along with the medical insurance rates, makes the staff and students potentially more medically vulnerable than the South African population. The main improvements of the emergency management are required in the tornado response and the information dissemination during health emergencies. The latter should involve the increased use of social media and e-mails, following the Taylor model of communication. Infrastructure must be improved in the telecommunication sector in the face of unpredictable electricity outages.
Keywords: Public health, Rural university, Taylor model of communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21326600 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356599 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems
Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil
Abstract:
Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.
Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19466598 Multivalued Knowledge-Base based on Multivalued Datalog
Authors: Agnes Achs
Abstract:
The basic aim of our study is to give a possible model for handling uncertain information. This model is worked out in the framework of DATALOG. The concept of multivalued knowledgebase will be defined as a quadruple of any background knowledge; a deduction mechanism; a connecting algorithm, and a function set of the program, which help us to determine the uncertainty levels of the results. At first the concept of fuzzy Datalog will be summarized, then its extensions for intuitionistic- and interval-valued fuzzy logic is given and the concept of bipolar fuzzy Datalog is introduced. Based on these extensions the concept of multivalued knowledge-base will be defined. This knowledge-base can be a possible background of a future agent-model.
Keywords: Fuzzy-, intuitionistic-, bipolar datalog, multivalued knowledge-base
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11606597 The Strategies for Teaching Digital Art in the Classroom as a Way of Enhancing Pupils’ Artistic Creativity
Authors: Aber Salem Aboalgasm, Rupert Ward
Abstract:
Teaching art by digital means is a big challenge for the majority of teachers of art and design in primary schools, yet it allows relationships between art, technology and creativity to be clearly identified. The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom to improve creative ability in pupils aged between nine and eleven years. It also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning to draw by using an e-drawing package, and for teachers who are interested in teaching modern digital art in order to improve children’s creativity. By illustrating the strategy of teaching art through technology, this model may also help education providers to make suitable choices about which technological approaches are most effective in enhancing students’ creative ability, and which digital art tools can benefit children by developing their technical skills. It is also expected that use of this model will help to develop skills of social interaction, which may in turn improve intellectual ability.
Keywords: Digital tools, motivation, creative activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31056596 Kinetic and Optimization Studies on Ethanol Production from Corn Flour
Authors: K. Manikandan, T. Viruthagiri
Abstract:
Studies on Simultaneous Saccharification and Fermentation (SSF) of corn flour, a major agricultural product as the substrate using starch digesting glucoamylase enzyme derived from Aspergillus niger and non starch digesting and sugar fermenting Saccharomyces cerevisiae in a batch fermentation. Experiments based on Central Composite Design (CCD) were conducted to study the effect of substrate concentration, pH, temperature, enzyme concentration on Ethanol Concentration and the above parameters were optimized using Response Surface Methodology (RSM). The optimum values of substrate concentration, pH, temperature and enzyme concentration were found to be 160 g/l, 5.5, 30°C and 50 IU respectively. The effect of inoculums age on ethanol concentration was also investigated. The corn flour solution equivalent to 16% initial starch concentration gave the highest ethanol concentration of 63.04 g/l after 48 h of fermentation at optimum conditions of pH and temperature. Monod model and Logistic model were used for growth kinetics and Leudeking – Piret model was used for product formation kinetics.
Keywords: Simultaneous Saccharification and Fermentation(SSF), Corn Starch, Ethanol, Logisitic Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39176595 The Hybrid Knowledge Model for Product Development Management
Authors: Heejung Lee, Hyo-Won Suh
Abstract:
Hybrid knowledge model is suggested as an underlying framework for product development management. It can support such hybrid features as ontologies and rules. Effective collaboration in product development environment depends on sharing and reasoning product information as well as engineering knowledge. Many studies have considered product information and engineering knowledge. However, most previous research has focused either on building the ontology of product information or rule-based systems of engineering knowledge. This paper shows that F-logic based knowledge model can support such desirable features in a hybrid way.Keywords: Ontology, rule, F-logic, product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14786594 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7656593 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8106592 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836