Search results for: Quantum Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3577

Search results for: Quantum Algorithm

3577 A Quantum Algorithm of Constructing Image Histogram

Authors: Yi Zhang, Kai Lu, Ying-hui Gao, Mo Wang

Abstract:

Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.

Keywords: Quantum Image Representation, Quantum Algorithm, Image Histogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
3576 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
3575 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
3574 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation

Authors: Hichem Talbi, Mohamed Batouche, Amer Draa

Abstract:

In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.

Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
3573 Entanglement-based Quantum Computing by Diagrams of States

Authors: Sara Felloni, Giuliano Strini

Abstract:

We explore entanglement in composite quantum systems and how its peculiar properties are exploited in quantum information and communication protocols by means of Diagrams of States, a novel method to graphically represent and analyze how quantum information is elaborated during computations performed by quantum circuits. We present quantum diagrams of states for Bell states generation, measurements and projections, for dense coding and quantum teleportation, for probabilistic quantum machines designed to perform approximate quantum cloning and universal NOT and, finally, for quantum privacy amplification based on entanglement purification. Diagrams of states prove to be a useful approach to analyze quantum computations, by offering an intuitive graphic representation of the processing of quantum information. They also help in conceiving novel quantum computations, from describing the desired information processing to deriving the final implementation by quantum gate arrays.

Keywords: Diagrams of states, entanglement, quantum circuits, quantum information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
3572 Eight-State BB84: A C# Simulation

Authors: Liliana Zisu

Abstract:

The first and best known quantum protocol BB84, whose security is unconditional allows the transmission of a key with a length equal to that of the message. This key used with an encryption algorithm leads to an unbreakable cryptographic scheme. Despite advantages the protocol still can be improved in at least two aspects: its efficiency which is of about 50%, only half of the photons transmitted are used to create the encryption key and the second aspect refers to the communication that takes place on the classic channel, as it must be reduced or even eliminated. The paper presents a method that improves the two aspects of the BB84 protocol by using quantum memory and eight states of polarization. The implementation of both the proposed method and the BB84 protocol was done through a C# application.

Keywords: BB84, protocol, quantum cryptography, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
3571 A Programmer’s Survey of the Quantum Computing Paradigm

Authors: Philippe Jorrand

Abstract:

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.

Keywords: Quantum information processing, quantum algorithms, quantum programming languages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
3570 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar

Abstract:

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
3569 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
3568 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger

Abstract:

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
3567 A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach

Authors: Mir Shahriar Emami, Mohammad Reza Meybodi

Abstract:

Prime Factorization based on Quantum approach in two phases has been performed. The first phase has been achieved at Quantum computer and the second phase has been achieved at the classic computer (Post Processing). At the second phase the goal is to estimate the period r of equation xrN ≡ 1 and to find the prime factors of the composite integer N in classic computer. In this paper we present a method based on Randomized Approach for estimation the period r with a satisfactory probability and the composite integer N will be factorized therefore with the Randomized Approach even the gesture of the period is not exactly the real period at least we can find one of the prime factors of composite N. Finally we present some important points for designing an Emulator for Quantum Computer Simulation.

Keywords: Quantum Prime Factorization, RandomizedAlgorithms, Quantum Computer Simulation, Quantum Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
3566 An Approach of Quantum Steganography through Special SSCE Code

Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Encrypted messages sending frequently draws the attention of third parties, perhaps causing attempts to break and reveal the original messages. Steganography is introduced to hide the existence of the communication by concealing a secret message in an appropriate carrier like text, image, audio or video. Quantum steganography where the sender (Alice) embeds her steganographic information into the cover and sends it to the receiver (Bob) over a communication channel. Alice and Bob share an algorithm and hide quantum information in the cover. An eavesdropper (Eve) without access to the algorithm can-t find out the existence of the quantum message. In this paper, a text quantum steganography technique based on the use of indefinite articles (a) or (an) in conjunction with the nonspecific or non-particular nouns in English language and quantum gate truth table have been proposed. The authors also introduced a new code representation technique (SSCE - Secret Steganography Code for Embedding) at both ends in order to achieve high level of security. Before the embedding operation each character of the secret message has been converted to SSCE Value and then embeds to cover text. Finally stego text is formed and transmits to the receiver side. At the receiver side different reverse operation has been carried out to get back the original information.

Keywords: Quantum Steganography, SSCE (Secret SteganographyCode for Embedding), Security, Cover Text, Stego Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
3565 Unconditionally Secure Quantum Payment System

Authors: Essam Al-Daoud

Abstract:

A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.

Keywords: Bell state, GHZ state, Quantum key distribution, Quantum payment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
3564 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
3563 On Quantum BCH Codes and Its Duals

Authors: J. S. Bhullar, Manish Gupta

Abstract:

Classical Bose-Chaudhuri-Hocquenghem (BCH) codes C that contain their dual codes can be used to construct quantum stabilizer codes this chapter studies the properties of such codes. It had been shown that a BCH code of length n which contains its dual code satisfies the bound on weight of any non-zero codeword in C and converse is also true. One impressive difficulty in quantum communication and computation is to protect informationcarrying quantum states against undesired interactions with the environment. To address this difficulty, many good quantum errorcorrecting codes have been derived as binary stabilizer codes. We were able to shed more light on the structure of dual containing BCH codes. These results make it possible to determine the parameters of quantum BCH codes in terms of weight of non-zero dual codeword.

Keywords: Quantum Codes, BCH Codes, Dual BCH Codes, Designed Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
3562 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
3561 Algebraic Quantum Error Correction Codes

Authors: Ming-Chung Tsai, Kuan-Peng Chen, Zheng-Yao

Abstract:

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of quantum codes are classified according to the relation of the codeword operators and some initial quantum state. By linking the unitary Lie algebra with the additive group, the classical correspondences of some of these quantum codes can be rendered.

Keywords: Quotient-Algebra Partition, Codeword Spinors, Basis Codewords, Syndrome Spinors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
3560 An Authentication Protocol for Quantum Enabled Mobile Devices

Authors: Natarajan Venkatachalam, Subrahmanya V. R. K. Rao, Vijay Karthikeyan Dhandapani, Swaminathan Saravanavel

Abstract:

The quantum communication technology is an evolving design which connects multiple quantum enabled devices to internet for secret communication or sensitive information exchange. In future, the number of these compact quantum enabled devices will increase immensely making them an integral part of present communication systems. Therefore, safety and security of such devices is also a major concern for us. To ensure the customer sensitive information will not be eavesdropped or deciphered, we need a strong authentications and encryption mechanism. In this paper, we propose a mutual authentication scheme between these smart quantum devices and server based on the secure exchange of information through quantum channel which gives better solutions for symmetric key exchange issues. An important part of this work is to propose a secure mutual authentication protocol over the quantum channel. We show that our approach offers robust authentication protocol and further our solution is lightweight, scalable, cost-effective with optimized computational processing overheads.

Keywords: Quantum cryptography, quantum key distribution, wireless quantum communication, authentication protocol, quantum enabled device, trusted third party.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
3559 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: Quantum Dots, Nano-Particles, LSPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
3558 Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Authors: Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract:

Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are lativistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords: Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
3557 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space

Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh

Abstract:

The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.

Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
3556 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
3555 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
3554 Implementation of Quantum Rotation Gates Using Controlled Non-Adiabatic Evolutions

Authors: Abdelrahman A. H. Abdelrahim, Gharib Subhi Mahmoud, Sherzod Turaev, Azeddine Messikh

Abstract:

Quantum gates are the basic building blocks in the quantum circuits model. These gates can be implemented using adiabatic or non adiabatic processes. Adiabatic models can be controlled using auxiliary qubits, whereas non adiabatic models can be simplified by using one single-shot implementation. In this paper, the controlled adiabatic evolutions is combined with the single-shot implementation to obtain quantum gates with controlled non adiabatic evolutions. This is an important improvement which can speed the implementation of quantum gates and reduce the errors due to the long run in the adiabatic model. The robustness of our scheme to different types of errors is also investigated.

Keywords: Adiabatic evolutions, non adiabatic evolutions, controlled adiabatic evolutions, quantum rotation gates, dephasing rates, master equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
3553 Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.

Keywords: Amplitude Modulation, Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
3552 A Computer Model of Quantum Field Theory

Authors: Hans H. Diel

Abstract:

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

Keywords: Computational Modeling, Simulation of Quantum Theory, Quantum Field Theory, Quantum Electrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
3551 A method of Authentication for Quantum Networks

Authors: Stefan Rass

Abstract:

Quantum cryptography offers a way of key agreement, which is unbreakable by any external adversary. Authentication is of crucial importance, as perfect secrecy is worthless if the identity of the addressee cannot be ensured before sending important information. Message authentication has been studied thoroughly, but no approach seems to be able to explicitly counter meet-in-the-middle impersonation attacks. The goal of this paper is the development of an authentication scheme being resistant against active adversaries controlling the communication channel. The scheme is built on top of a key-establishment protocol and is unconditionally secure if built upon quantum cryptographic key exchange. In general, the security is the same as for the key-agreement protocol lying underneath.

Keywords: Meet-in-the-middle attack, quantum key distribution, quantum networks, unconditionally secure authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
3550 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity

Authors: K. Orozović, B. Balon

Abstract:

In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.

Keywords: de Brogli wavelength, relativistic physics, rest energy, quantum physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
3549 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality

Authors: Georgi Bebrov, Rozalina Dimova

Abstract:

In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.

Keywords: Quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
3548 1/f Noise in Quantum-Size Heteronanostructures Based On GaAs and Alloys

Authors: Alexey V. Klyuev, Arkady. V. Yakimov

Abstract:

The 1/f noise investigation in nanoscale light-emitting diodes and lasers, based on GaAs and alloys, is presented here. Leakage and additional (to recombination through quantum wells and/or dots) nonlinear currents were detected and it was shown that these currents are the main source of the 1/f noise in devices studied.

Keywords: Lasers, light-emitting diodes, quantum dots, quantum wells, 1/f noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080