Search results for: Discontinuous Finite Element
306 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795305 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders
Authors: Prawal Sinha, Getachew Adamu
Abstract:
Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871304 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters
Authors: Renkai Wang, Tingcun Wei
Abstract:
In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.
Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262303 Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan
Authors: Magdi M. E. Zumrawi
Abstract:
Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings.Keywords: Culvert, erosion, failure, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456302 Design and Fabrication of Micro-Bubble Oxygenator
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng
Abstract:
This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.
Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354301 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant
Authors: G. Zahedi, H. Yaghoobi
Abstract:
Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.Keywords: Dehydrogenation, fixed bed reactor, modeling, linear alkyl benzene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026300 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines
Authors: Anis Gharbi
Abstract:
This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.
Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002299 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks
Authors: Manay E., Sahin B., Yilmaz M., Gelis K.
Abstract:
In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.
Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577298 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer
Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar
Abstract:
A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768297 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.Keywords: Nano reactive silica sand powder concrete, consolidation, compressive strength, normal curing, thermal accelerated curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372296 Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models
Authors: Asfaw Gezae Daful
Abstract:
In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.
Keywords: Reactive Distillation, Equilibrium model, Nonequilibrium model, Methyl Tert-Butyl Ether
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4206295 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels
Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin
Abstract:
Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.
Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3313294 Data Mining Determination of Sunlight Average Input for Solar Power Plant
Authors: Fl. Loury, P. Sablonière, C. Lamoureux, G. Magnier, Th. Gutierrez
Abstract:
A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.
Keywords: Base Input Reconstruction, Data Mining, Efficiency Factor, Information Pattern Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528293 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers
Authors: Salahaldein Alsadey, Issa Amaish
Abstract:
Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing SFs as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse RA replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of SF-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without SF. Test results revealed that concrete samples incorporating SF exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of SF.
Keywords: Sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89292 Optimal Water Conservation in a Mechanical Cooling Tower Operations
Authors: M. Boumaza, Y. Bakhabkhi
Abstract:
Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.
Keywords: water, recycle, performance, cooling tower
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817291 Performance Improvement in Internally Finned Tube by Shape Optimization
Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu
Abstract:
Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450290 A Numerical Study of Single-phase Forced Convective Heat Transfer in Tube in Tube Heat Exchangers
Authors: P. Mohajeri Khameneh, I. Mirzaie, N. Pourmahmoud, M. Rahimi, S. Majidyfar
Abstract:
Three dimensional simulations in tube in tube heat exchangers are investigated numerically in this study. In these simulations forced convective heat transfer and laminar flow of single-phase water are considered. In order to measure heat transfer parameters in these heat exchangers, FLUENT CFD Solver is used in this numerical method. For the purpose of creating geometry and exert boundary and initial conditions in the present model, finite volume method in Computational Fluid Dynamics is used in this study. In the present study, at each Z-location, variation of local temperatures, heat flux and Nusselt number at the whole tube is investigated in detail. Thereafter, averaged computational Nusselt number in this model is calculated. In addition, conceivable pressure drops have been obtained at each Z-location in this model. Then, pressure drop values in the present model are explored. Finally, all the numerical results for this kind of heat exchanger will be discussed precisely.Keywords: Heat exchanger, Laminar flow, CFD, Nusseltnumber, Tube in tube, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034289 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis
Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches
Abstract:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Keywords: Boundary elements, Building floor structures, Platebending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982288 Water Boundary Layer Flow Over Rotating Sphere with Mass Transfer
Authors: G. Revathi, P. Saikrishnan
Abstract:
An analysis is performed to study the influence of nonuniform double slot suction on a steady laminar boundary layer flow over a rotating sphere when fluid properties such as viscosity and Prandtl number are inverse linear functions of temperature. Nonsimilar solutions have been obtained from the starting point of the streamwise co-ordinate to the exact point of separation. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation have been overcome by applying an implicit finite difference scheme in combination with the quasi-linearization technique and an appropriate selection of the finer step sizes along the stream-wise direction. The present investigation shows that the point of ordinary separation can be delayed by nonuniform double slot suction if the mass transfer rate is increased and also if the slots are positioned further downstream. In addition, the investigation reveals that double slot suction is found to be more effective compared to a single slot suction in delaying ordinary separation. As rotation parameter increase the point of separation moves upstream direction.
Keywords: Boundary layer, suction, mass transfer, rotating sphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6374287 An Investigation on the Role of Iwan as a Sustainable Element in the Traditional Houses of Different Climatic Regions of Iran
Authors: H. Nejadriahi
Abstract:
This paper focuses on the performance of Iwan as one of the significant spaces in the traditional architecture of Iran. The aim of this study is to investigate on the role of Iwan in sustainability enhancement of traditional houses of different climatic regions of Iran. Iwan is considered as a semi-open space, which its form and location in the building highly depends to the climatic situation of that region. For that reason, Iwan is recognized as one of the sustainable elements in the traditional houses of Iran, which can provide more comfort with less use of energy. In this study, the history and emergence of Iwan in the traditional architecture of Iran as well as the concept of sustainability in architecture are explained briefly. Then, the change of performance or form of Iwan is analysed in different climatic regions of Iran in accordance to the sustainability concepts. The methods used in this study are descriptive and analytic. Results of this paper verify that studying the sustainability solutions in the traditional architecture of Iran, would be a valuable source of inspiration for the current designers to create an environmental and sustainable architecture for the future.
Keywords: Climatic regions of Iran, Iwan, sustainability, traditional houses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447286 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks
Authors: S.Ponmalar, S.Sundaravadivelu
Abstract:
Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.
Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445285 Development of an Internet of Things System for Smart Crop Production
Authors: O. M. Olanrewaju, F. O. Echobu, A. G. Adesoji, E. D. Ajik, J. N. Ndabula, S. Luka
Abstract:
Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. The Internet of Things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for NPK, soil temperature and soil moisture in a given soil at the time of test. In this implementation, a sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits performed adequately well, as the range of values obtained across the segments was within a very close range.
Keywords: Internet of things, soil nutrients, test kit, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64284 Aspects of Semiotics in Contemporary Design: A Case Study on Dice Brand
Authors: Laila Zahran Mohammed Alsibani
Abstract:
The aim of the research is to understand the aspects of semiotics in contemporary designs by redesigning an Omani donut brand with localized cultural identity. To do so, visual identity samples of Dice brand of donuts in Oman has been selected to be a case study. This study conducted based on semiotic theory by using mixed method research tools which are: documentation analysis, interview and survey. The literature review concentrates on key areas of semiotics in visual elements used in the brand designs. Also, it spotlights on the categories of semiotics in visual design. In addition, this research explores the visual cues in brand identity. The objectives of the research are to investigate the aspects of semiotics in providing meaning to visual cues and to identify visual cues for each visual element. It is hoped that this study will have the contribution to a better understanding of the different ways of using semiotics in contemporary designs. Moreover, this research can be a reference for further studies in understanding and explaining current and future design trends. Future research can also focus on how brand-related signs are perceived by consumers.
Keywords: Brands, semiotics, visual arts, visual communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181283 Design of Wireless Readout System for Resonant Gas Sensors
Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu
Abstract:
This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.
Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496282 Electronic Transactions: Jurisdictional Issues in the European Union
Authors: Faeze Razmpa
Abstract:
One of the main consequences of the ubiquitous usage of Internet as a means to conduct business has been the progressive internationalization of contracts created to support such transactions. As electronic commerce becomes International commerce, the reality is that commercial disputes will occur creating such questions as: "In which country do I bring proceedings?" and "Which law is to be applied to solve disputes?" The decentralized and global structure of the Internet and its decentralized operation have given e-commerce a transnational element that affects two questions essential to any transaction: applicable law and jurisdiction in the event of dispute. The sharing of applicable law and jurisdiction among States in respect of international transactions traditionally has been based on the use of contact factors generally of a territorial nature (the place where real estate is located, customary residence, principal establishment, place of shipping goods). The characteristics of the Internet as a new space sometimes make it difficult to apply these rules, and may make them inoperative or lead to results that are surprising or totally foreign to the contracting parties and other elements and circumstances of the case.
Keywords: Electronic, European Union, Jurisdiction, Internet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779281 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding
Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer
Abstract:
In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.
Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069280 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects
Authors: Y. Outaleb, K. Bouhadef, O. Rahli
Abstract:
Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562279 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269278 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.
Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962277 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846