
 

 

  

Abstract—A method is proposed to extract faithful representative 

patterns from data set of observations when they are suffering from 

non-negligible fluctuations. Supposing time interval between 

measurements to be extremely small compared to observation time, it 

consists in defining first a subset of intermediate time intervals 

characterizing coherent behavior. Data projection on these intervals 

gives a set of curves out of which an ideally “perfect” one is 

constructed by taking the sup limit of them. Then comparison with 

average real curve in corresponding interval gives an efficiency 

parameter expressing the degradation consecutive to fluctuation 

effect. The method is applied to sunlight data collected in a specific 

place, where ideal sunlight is the one resulting from direct exposure 

at location latitude over the year, and efficiency is resulting from 

action of meteorological parameters, mainly cloudiness, at different 

periods of the year. The extracted information already gives 

interesting element of decision, before being used for analysis of 

plant control. 
 

Keywords—Base Input Reconstruction, Data Mining, Efficiency 

Factor, Information Pattern Operator. 

I. INTRODUCTION 

XPLICIT calculation of system dynamics is very often 

requiring the knowledge of elements belonging to system 

environment, because of intricate interactions rendering 

system isolation more difficult, if sometimes not possible. 

They play the role of system inputs, and a real problem is to 

find their correct representation to deal with so that system 

dynamics can be handled by adequate control in compatibility 

with general constraints on time and space imposed by 

solution granularity [1]. For instance, when analyzing piston 

dynamics in a cylinder under gas molecules collisions on one 

side, it is completely acceptable to represent their effect 

globally by a pressure term once Knusen number K < 1 

(easily satisfied at usual pressure), and adequate control in this 

case is faithfully based on pressure. More generally, the 

problem exists anytime the raw inputs affecting system 

dynamics have a space-time granularity much smaller than 

characteristic one for system under study [2]-[5]. In this case 

simple averaging moments to adequate order are known to be 

sufficient for providing correct approximation to system 

dynamics with error evaluation. Situation is much more 
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difficult when input fluctuations are comparable to system 

space-time granularity. In this case, it is necessary to find 

faithful enough representation for these raw data to become 

coherent and acceptable inputs [6], [7]. Many different 

processes have been worked out to set up corresponding 

transformation, depending on correlation degree exhibited by 

fluctuations [8]. Worst case occurs when inputs are very 

regular phenomena randomly modified by “large” 

perturbations, ie able to change significantly regular input 

amplitude. 

This is typically the case where the system is a solar plant, 

regular input is sunlight which is with clear sky very easily 

predictable over the year at any location on the Earth, and 

perturbation is a meteorological event such as cloudiness 

reducing initial sunlight by sometimes extremely large factor. 

To correctly analyze such an inevitable situation with the 

development of alternative energies, simple filtering is not 

sufficient and more elaborated data mining methods have to be 

used [9]. The idea is to find a pattern P which will structure 

raw data D for being interpretable. This is done via an 
interface I which extracts organized information from data 

[10], [11]. The process is on-line for controlled real time 

systems and may be very demanding. Another easier case is 

test case off-line analysis where it is intended to evaluate 

system response performance R and sensitivity S with 

different control laws L in order to get most appropriate 

robustness ball B within which system dynamics remain under 

control against a class of possible fluctuating inputs F. In this 
last situation, the task is to define a representative averaged 

input class <F> = IF from the set of possible ones F such 

that R(<F>, L) ⊂ B  ⇒ R(F, L) ⊂ B. The problem has been 

already addressed elsewhere [12], and only the definition of 

interface I will be discussed here. 

II. RAW DATA ANALYSIS 

Data base D = D(Y,∆) typically contains sunlight 

measurements over years Yk (k=1,2,N) collected every time 

interval ∆ of the day representing N = N×J×ν(∆) values of sun 

power at the location where the solar plant will be build up, 

where J is the average number of days in a year in the 

observation interval and ν(∆) the number of daily 

measurements. To find a pattern over the years (following 

natural frequency of solar lighting), the idea has been to 

compare the sunlight during a typical week Wm
k
 of each 

trimester for each of k=1,2,..N recorded years, so m = n+13(t 

−1) with 0<n<13 and t = 1,2,3,4 the chosen trimester number. 

The choice of a week time period as a base representative 
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“unit” T is mainly motivated by the needs to have a relevant 

interval such that ∆ << T << Y in the sense that it typically 
represents sunlight during the trimester in which it is located 

in the year. One then gets a set of 4N curves expanding over 

the seven days of the considered week, i.e.

for day time and 0 at night. Considering their envelope 

quite evident that there will be larger difference between their 

peaks as latitude of measurements is higher. On the other 

hand, variations of sunlight are the result of a “perfect” 

sunlight modified by meteorological events which will be 

considered as random events (hence the 

time period because it corresponds to the maximum 

correlation time for a heat unit coming from the sun before 

random dilution in atmosphere). 

So to create the “theoretical” model of “perfect” sunlight at 

measurement location, the maximum sunlight value at each 

hour of observation years (i.e. over initially collected 

24×7×52×Ν data) has been selected. This rests upon the 

assumption that at measurement location, the climate will stay 

in the same state of repeatability determined from the a

over the N observation years. This allows end up with a set of 

only four curves representing average daily “perfect” sunlight 

for each trimester in the year once again constructed from 

observations of past N years. Of course they each reflect 

sunlight situation during the trimester of the year with more 

power during summer than in winter in north hemisphere.

Next step in modeling process of sunlight variations due to 

meteorological events (mainly cloudiness) is to compare 

average day with previous “perfect” day sunlight for each 

trimester. By least square method it is possible to evaluate the 

effect of this meteorological bias as an efficiency factor 

summarizing over all the consequence of “imperfection” of 

local sunlight. It should be noticed that real sunlight being the 

product of “perfect” one by efficiency factor, it happens that 

even if “perfect” sunlight is larger during a trimester than in 

another one, the final sunlight felt on the ground may be 

nevertheless comparable or even larger with sm

one due to heavy possible cloudiness considerably reducing 

efficiency factor in larger sunlight period. Such a result is 

typical of very sunny intermediate spring and autumn periods 

as compared to cloudy summer period which are observed in 

specific places, and justifies a preliminary careful choice of 

solar plant location for best efficiency all year round based on 

present analysis. 

III. APPLICATION 

Following previous steps, a data base has been first 

collected corresponding to sunlight measurements for 

consecutive years 2000 to 2004 at each hour all representing a 

total of N = 5×7×24×52 = 43,680 sunlight values. Typical 

week has next been determined from observation and 

comparison in each trimester of the year, and came out with 

week numbers Wm
k
 = 10,21,35,48 for all N

trimesters in order respectively. Plotting data for

gives the following sets of N curves, see Fig

sunlight measurements in W/m
2
 for the various hours in the 
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summarizing over all the consequence of “imperfection” of 

real sunlight being the 

product of “perfect” one by efficiency factor, it happens that 

even if “perfect” sunlight is larger during a trimester than in 

another one, the final sunlight felt on the ground may be 

nevertheless comparable or even larger with smaller “perfect” 

one due to heavy possible cloudiness considerably reducing 

efficiency factor in larger sunlight period. Such a result is 

typical of very sunny intermediate spring and autumn periods 

as compared to cloudy summer period which are observed in 

specific places, and justifies a preliminary careful choice of 

solar plant location for best efficiency all year round based on 

Following previous steps, a data base has been first 

collected corresponding to sunlight measurements for N = 5 

consecutive years 2000 to 2004 at each hour all representing a 

= 43,680 sunlight values. Typical 

week has next been determined from observation and 

comparison in each trimester of the year, and came out with 

N years and the four 

trimesters in order respectively. Plotting data for each week 

curves, see Figs. 1-4 representing 

for the various hours in the 

day.  

Fig. 1 Sunlight Measurements during Week 10 for 

It is verified that sunlight maximum value is up to 

W/m
2
, but under cloudiness it can abruptly drop to 100 W/m

(during year 2001). 

Fig. 2 Sunlight Measurements during Week 21 for Trimester 2

Here the common relative peak is increased as compared t

Trimester 1 and reaches 900 to 950 W/m². It can be observed 

that meteorological effects are more strongly influencing final 

observed sunlight values than during Trimester 1.

Fig. 3 Sunlight Measurements during Week 35 for Trimester 3

The value of common relative peak is lower than for 

previous Trimester and stays around 800W/m². Also 

meteorological effects are less important and curves are 

smoother than for previous Trimesters. 
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Fig. 2 Sunlight Measurements during Week 21 for Trimester 2 
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observed sunlight values than during Trimester 1. 

 

 

Fig. 3 Sunlight Measurements during Week 35 for Trimester 3 
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Fig. 4 Sunlight Measurements during Week 48 for Trimester 4

 

As expectable for winter time the value of common relative 

peak is much lower around 425 W/m². Also sunlight period is 

much shorter during the days.  

From all data and following the procedure explained in 

previous paragraph, the four “perfect” sunlight cur

corresponding to each Trimester (for the interval of N selected 

observation years) are obtained as shown on Fig. 5.

 

Fig. 5 2000 to 2005 Theoretical “Perfect” Sunlight 

 

Evidently the curves are reflecting the season difference due 

to latitude. Comparison with daily average “real” ones gives 

the efficiency coefficient φ by the percentage of hatched part 

underneath “perfect” previous curves, and which will be 

retained in final sunlight trimester description.

 

Fig. 6 Comparison of Theoretical ‘’Perfect’’ Sunlight with Real one 

for Efficiency Evaluation

 

As already indicated, the influence of local climate can be 

very important in strongly modifying the finally received 
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As expectable for winter time the value of common relative 

peak is much lower around 425 W/m². Also sunlight period is 

From all data and following the procedure explained in 

previous paragraph, the four “perfect” sunlight curves 

corresponding to each Trimester (for the interval of N selected 

observation years) are obtained as shown on Fig. 5. 

 

Perfect” Sunlight Quarterly Curves  

Evidently the curves are reflecting the season difference due 

to latitude. Comparison with daily average “real” ones gives 

by the percentage of hatched part 

underneath “perfect” previous curves, and which will be 

nal sunlight trimester description. 

 

6 Comparison of Theoretical ‘’Perfect’’ Sunlight with Real one 

for Efficiency Evaluation 

As already indicated, the influence of local climate can be 

very important in strongly modifying the finally received 

sunlight which could have been much more favorable in 

“perfect” circumstances.  

IV. CONCLUSION

Determination of realistic inputs in production systems is a 

very important step in analysis of their final performances, and 

is the more difficult as these inputs are o

unmanageable nature. Solar power plants belong to this class. 

In present study a method has been proposed to represent 

actual sunlight inputs by an interpreter out of which analysis 

of possible power plant performance receiving these inputs 

and its control can be determined. It consists in defining first a 

typically representative trimester reference sunlight curve by 

analysis of measurement data collected over a long enough 

preceding period, giving the theoretical “perfect” local 

sunlight, and in correcting it in a second step by a 

“meteorological” efficiency factor which reduces in 

proportion expectable sunlight. This approach concentrates in 

only two elements the inputs to plant system. Even if as 

expectable it basically restricts good potential 

to low latitude and low cloudiness ones, it also allows 

compare possible locations with respect to these two aspects 

and provides an interesting element of choice depending on 

proposed utilization. Plant control analysis can be undertaken 

next as shown elsewhere.   
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