Search results for: Hybrid Algorithms.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2161

Search results for: Hybrid Algorithms.

481 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: Daylight, window, orientation, energy consumption, design builder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
480 Fuzzy Logic Speed Controller for Direct Vector Control of Induction Motor

Authors: Ben Hamed M., Sbita L

Abstract:

This paper presents a new method for the implementation of a direct rotor flux control (DRFOC) of induction motor (IM) drives. It is based on the rotor flux components regulation. The d and q axis rotor flux components feed proportional integral (PI) controllers. The outputs of which are the target stator voltages (vdsref and vqsref). While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI like controller is commonly used. These controllers provide limited good performances over a wide range of operations even under ideal field oriented conditions. An alternate approach is to use the so called fuzzy logic controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP). Simulation and experimental results have been presented for a one kw IM drives to confirm the validity of the proposed algorithms.

Keywords: DRFOC, fuzzy logic, variable speed drives, control, IM and real time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
479 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)

Authors: A. Shamsi, N. Choupani

Abstract:

Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.

Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
478 Replicating Data Objects in Large-scale Distributed Computing Systems using Extended Vickrey Auction

Authors: Samee Ullah Khan, Ishfaq Ahmad

Abstract:

This paper proposes a novel game theoretical technique to address the problem of data object replication in largescale distributed computing systems. The proposed technique draws inspiration from computational economic theory and employs the extended Vickrey auction. Specifically, players in a non-cooperative environment compete for server-side scarce memory space to replicate data objects so as to minimize the total network object transfer cost, while maintaining object concurrency. Optimization of such a cost in turn leads to load balancing, fault-tolerance and reduced user access time. The method is experimentally evaluated against four well-known techniques from the literature: branch and bound, greedy, bin-packing and genetic algorithms. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality.

Keywords: Auctions, data replication, pricing, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
477 Modular Hybrid Robots for Safe Human-Robot Interaction

Authors: J. Radojicic, D. Surdilovic, G. Schreck

Abstract:

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
476 Solar-Inducted Cluster Head Relocation Algorithm

Authors: Goran Djukanovic, Goran Popovic

Abstract:

A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.

Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
475 Using Visual Technologies to Promote Excellence in Computer Science Education

Authors: Carol B. Collins, M. H. N Tabrizi

Abstract:

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors' and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors' experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

Keywords: Algorithms, CASE, UML, Problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
474 A Phenomic Algorithm for Reconstruction of Gene Networks

Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy

Abstract:

The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.

Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
473 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Authors: Ching-Fen Jiang

Abstract:

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Keywords: edge detection, ultrasonic images, speckle noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
472 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: Cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
471 AI-Based Technologies in International Arbitration: An Exploratory Study on the Practicability of Applying AI Tools on International Arbitration

Authors: Annabelle Ogochukwu Onyefulu-Kingston

Abstract:

One of the major purposes of artificial intelligence (AI) today is to evaluate and analyse millions of micro and macro data in order to determine what is relevant in a particular case and proffer it in an adequate manner. Microdata, as far as it relates to AI in international arbitration, is the millions of key issues specifically mentioned by either one or both parties or by their counsels, arbitrators, or arbitral tribunals in arbitral proceedings. This can be qualifications of expert witness and admissibility of evidence, amongst others. Macro data, on the other hand, refer to data derived from the resolution of the dispute and, consequently, the final and binding award. A notable example of this includes the rationale of the award and specific and general damages awarded, amongst others. This paper aims to critically evaluate and analyses the possibility of technological inclusion in international arbitration. This research will be imploring the qualitative method by evaluating existing literature on the consequence of applying AI to both micro and macro data in international arbitration, and how this can be of assistance to parties, counsels, and arbitrators.

Keywords: AI-based technologies, algorithms, arbitrators, international arbitration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30
470 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
469 Detecting Interactions between Behavioral Requirements with OWL and SWRL

Authors: Haibo Hu, Dan Yang, Chunxiao Ye, Chunlei Fu, Ren Li

Abstract:

High quality requirements analysis is one of the most crucial activities to ensure the success of a software project, so that requirements verification for software system becomes more and more important in Requirements Engineering (RE) and it is one of the most helpful strategies for improving the quality of software system. Related works show that requirement elicitation and analysis can be facilitated by ontological approaches and semantic web technologies. In this paper, we proposed a hybrid method which aims to verify requirements with structural and formal semantics to detect interactions. The proposed method is twofold: one is for modeling requirements with the semantic web language OWL, to construct a semantic context; the other is a set of interaction detection rules which are derived from scenario-based analysis and represented with semantic web rule language (SWRL). SWRL based rules are working with rule engines like Jess to reason in semantic context for requirements thus to detect interactions. The benefits of the proposed method lie in three aspects: the method (i) provides systematic steps for modeling requirements with an ontological approach, (ii) offers synergy of requirements elicitation and domain engineering for knowledge sharing, and (3)the proposed rules can systematically assist in requirements interaction detection.

Keywords: Requirements Engineering, Semantic Web, OWL, Requirements Interaction Detection, SWRL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
468 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes

Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.

Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
467 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
466 Distributional Semantics Approach to Thai Word Sense Disambiguation

Authors: Sunee Pongpinigpinyo, Wanchai Rivepiboon

Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

Keywords: Distributional semantics, Latent Semantic Indexing, natural language processing, Polysemous words, unsupervisedlearning, Word Sense Disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
465 Stock Portfolio Selection Using Chemical Reaction Optimization

Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li

Abstract:

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
464 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
463 Comparative Analysis of Machine Learning Tools: A Review

Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha

Abstract:

Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.

Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
462 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.

Keywords: Map building, DSmT, DST, uncertainty, information fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
461 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
460 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro

Abstract:

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
459 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
458 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: Instance selection, data reduction, MapReduce, kNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
457 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling

Authors: Adesoji T. Jaiyeola, Josiah Adeyemo

Abstract:

This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.

Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
456 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
455 3D Sensing and Mapping for a Tracked Mobile Robot with a Movable Laser Ranger Finder

Authors: Toyomi Fujita

Abstract:

This paper presents a sensing system for 3D sensing and mapping by a tracked mobile robot with an arm-type sensor movable unit and a laser range finder (LRF). The arm-type sensor movable unit is mounted on the robot and the LRF is installed at the end of the unit. This system enables the sensor to change position and orientation so that it avoids occlusions according to terrain by this mechanism. This sensing system is also able to change the height of the LRF by keeping its orientation flat for efficient sensing. In this kind of mapping, it may be difficult for moving robot to apply mapping algorithms such as the iterative closest point (ICP) because sets of the 2D data at each sensor height may be distant in a common surface. In order for this kind of mapping, the authors therefore applied interpolation to generate plausible model data for ICP. The results of several experiments provided validity of these kinds of sensing and mapping in this sensing system.

Keywords: Laser Range Finder, Arm-Type Sensor Movable Unit, Tracked Mobile Robot, 3D Mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
454 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
453 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova

Abstract:

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
452 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094