

Abstract—Evolutionary Programming (EP) represents a

methodology of Evolutionary Algorithms (EA) in which mutation is
considered as a main reproduction operator. This paper presents a
novel EP approach for Artificial Neural Networks (ANN) learning.
The proposed strategy consists of two components: the self-adaptive,
which contains phenotype information and the dynamic, which is
described by genotype. Self-adaptation is achieved by the addition of
a value, called the network weight, which depends on a total number
of hidden layers and an average number of neurons in hidden layers.
The dynamic component changes its value depending on the fitness
of a chromosome, exposed to mutation. Thus, the mutation step size
is controlled by two components, encapsulated in the algorithm,
which adjust it according to the characteristics of a predefined ANN
architecture and the fitness of a particular chromosome. The
comparative analysis of the proposed approach and the classical EP
(Gaussian mutation) showed, that that the significant acceleration of
the evolution process is achieved by using both phenotype and
genotype information in the mutation strategy.

Keywords—Artificial Neural Networks (ANN), Learning
Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

I. INTRODUCTION
UTATION-BASED Evolutionary Algorithms, also
known as Evolutionary Programming, have been

successfully applied not only to combinatorial optimization
problems but also to other areas of Artificial Intelligence (AI),
where they are used as subsidiary evolutionary approaches for
some parameters optimization, e.g. for ANNs connection
weights training [1-13]. The classical strategy used in EP is
Gaussian mutation operator, denoted as the classical EP
(CEP), based on a standard normal distribution [1, 5-9]. The
main disadvantage of this approach is its slow convergence to
a near-optimal solution. To overcome this drawback research
has been devoted towards the development of new mutation
strategies. Yao and Liu [15, 16] have proposed an alternative
mutation technique, called the Fast Evolutionary
Programming (FEP), which is based on the Cauchy
distribution function. Their comparative study of both
mutation-based algorithms showed that solving high-
dimensional optimization problems, the FEP converges
quicker to minima than the CEP. Furthermore, Yao et al. [17]
have developed an improved strategy of FEP, called the

K. Davoian and W.-M. Lippe are with the Department of Computer

Science, University of Münster, Einsteinstr. 62, 48149 Münster, Germany
(phone: +49-2518333796, fax: +49-2518333755, e-mail:
kristina.davoian@uni-muenster.de, lippe@math.uni-muenster.de).

improved Fast Evolutionary Programming (IFEP).
Detailed analysis of existing approaches, presented in [18]

showed that they utilize only genotype information, i.e.
depend on a total number of connection weights between
neurons. We have assumed, that the efficiency of a mutation
step size may depend not only on the genotype, but also on the
phenotype (according to the definition given by [1, 2] the
actual ANN architecture (a total number of neurons and
layers) is called phenotype and connection weights (their
values and a total number) represent genotype). In this paper
we propose a new self-adaptive mutation strategy based on a
uniform distribution for ANNs training. In comparison with
existing EP strategies, it contains not only genotype, but
includes also the phenotype information The phenotype
information in the proposed strategy is incorporated in a
value, called the network weight (NW), which adapts the
mutation operator to a given ANN architecture. The network
weight value depends on the number of hidden layers and the
average number of neurons in hidden layers and thus contains
information about an ANN’s “internal” structure. This
relationship is determined by the Fermi-Dirac-like function.

The dynamic part of the proposed strategy is determined by
the fitness function, which is defined by the individual’s mean
square error (MSE) between the expected and the actual
outputs over all examples of a considered task. This involves a
dynamic component in the mutation operator, which changes
its value during run time and adjusts the mutation strength
proportional to the fitness of a particular chromosome. These
two components together (the NW and the MSE) encapsulate
all necessary information about phenotype and genotype of a
given problem, which enables to adapt the mutation strength
according to the characteristics of ANN’s “internal”
architecture and fitness of a particular chromosome; this
increases the efficiency of reproduction (percentage of
successful mutations) and leads to a quick convergence to an
optimum.

Thus, the evolution of ANN architectures and connection
weights is driven by two components in the mutation
algorithm: the MSE, which changes its value during run time
and adjusts the mutation strength proportional to the fitness of
a particular chromosome, and the NW, which increases the
efficiency of reproduction by adapting the mutation step size
according to the size of the given ANN topology.

We provided experimental study of a NW-based EP for the
purpose of evaluating the performance of algorithm. In order
to determine the speed of algorithm’s work for ANNs of

A New Self-Adaptive EP Approach for ANN
Weights Training

Kristina Davoian, and Wolfram-M. Lippe

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

845International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

different complexity, we considered predefined ANNs and
evolved only the connection weights. The results were
compared with those, obtained by the CEP (Gaussian
mutation). To study the generalization ability of ANNs
evolved by the NW-based EP strategy, the algorithm has been
applied to the simultaneous evolution of connection weights
and architectures and tested on the problem of predicting
Mackey-Glass chaotic time series. The results of these
simulations were compared with those, obtained by EPNet
[19] and FNT [20] algorithms.

This paper is organized as follows: section II describes the
NW-based EP. Section III and IV present and analyze the
experimental results. Section V concludes this paper.

II. THE NW-BASED EVOLUTIONARY PROGRAMMING

Let us consider an initial population consisting of M

randomly generated chromosomes. Each chromosome Si = (s1,
s2,…, sm), ∀ i ∈{1,…, M}, represents one possible set of
connection weights, where m is a total number of connections
between neurons and sj ∈ [-1.0, 1.0] for j∈{1, …, m}. The
fitness of a particular chromosome depends on the considered
task and is assigned by a MSE. All chromosomes of parental
population take part in new individuals’ creation, i.e. expose
to mutation. In the described algorithm each new chromosome
is formed by applying mutation to one gene, randomly chosen
out of a parental individual, which is changed by the
following formula:

 ()randdynwjj NNnlNss),(0.1 +=′ (1)

where sj is a gene chosen out of a chromosome S, and
mutated; Ndyn – the MSE of Si and Nrand is a uniformly
distributed random value (Nrand ∈ [-1.0, 1.0]). The NW value
Nw(l, n) is defined by the function (2), which depends on the
number of hidden layers l and the average number of neurons
on hidden layers n. For each ANN the quantity Nw is
calculated only once and does not change its value during the
evolution, if we consider the evolution of connection weights
in the environment determined by an ANN architecture; in
case of simultaneous evolution of architectures and
connection weights it becomes a new value every time when
ANN’s architecture is changed. We provided extensive
empirical tests, considering predefined ANNs (in order to find
the best values of the NW with high precision, which
significantly increase the mutation step size), and studied their
dependency on the ANN architectures. The tests were
provided for ANNs with 1-5 hidden layers and 2-6 neurons on
each hidden layer, i.e. the simplest ANN had 1 hidden layer
with 2 neurons and the most complex ANN had 5 hidden
layers with 6 neurons on each layer. The following eight
global minimisation problems, cited by [15], have been used
to determine NW values: high-dimensional unimodal f1, f2 and
multimodal f9, f10 functions (dimension 30); and low-
dimensional functions f15 (dimension 4), f16, f17 and f18

(dimension 2) with only a few local minima. We considered
eight functions of different complexity (the most difficult are
multimodal functions where the number of local minima
increases exponentially with the problem dimension) with the
purpose of obtaining the generalised NW values, which
increase the average improvement of the population
independent of requirements of any given task, i.e. do not
contain knowledge of a problem. The empirical results
showed that the distribution of the optimal NW values is
similar for all considered functions and depends on the total
number of hidden layers and the average number of neurons
on hidden layers, i.e. NW is related only with ANNs’
“internal” architecture. This relationship is defined by the
Fermi-Dirac-like function and is calculated according to the
following formula:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
++=

1

1

1

exp1

2
2

),(

T
n

lBlAnlN w μ
 (2)

The value μ has the same physical sense as a chemical

potential in thermodynamics and depends on the number of
hidden layers (the original Fermi-Dirac function and included
in it chemical potential μ are cited by [21]):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+=

2

2

2
2

exp1
T

Bl
BAμ (3)

where the coefficients (constants) A1 = 3.0, B1 = 2.0, T1 = 0.4,
A2 = 1.2, B2 = 3.2, T2 = 0.6 (the original Fermi-Dirac function
depends on temperature T [21]).

As it is apparent from the equation (2), the behavior of its
fractional part (right hand expression) is changed with the
increment of hidden layers: up to 4 layers it becomes positive,
and when the number of hidden layers is 4 it becomes zero
(the exceptional case). This means, therefore, that the NW is
independent of the average number of neurons and has
optimal value 5.0. With more than 4 layers the fractional part
of the expression (2) becomes negative. In spite of these
characteristics of the equation (2), which are conditioned by
the adjustment of the optimal mutation step size to a particular
ANN architecture, the NW values are always positive.

The component Ndyn in equation (1) represents the genotype
information, that is, the MSE which is dynamic component in
the sense that it is different for every mutated chromosome. It
enables the control of a randomly generated value and the
adjustment of the mutation strength to an individual
depending on its fitness, i.e. the higher the error of a
chromosome, the higher the step size.

After mutation process the fitness values of parental and
offspring chromosomes are compared and the best individual
reaches the offspring population. The evolution cycle is
repeated until certain halting criteria are satisfied.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

846International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

III. THE XOR SIMULATIONS
The first set of experiments was conducted in order to

compare the NW-based EP and the CEP approaches. In these
experiments we tested the algorithm on the simple problem –
XOR function, and evolved the connection weights,
considering the same ANN architectures as those used for the
determination of the NW values (Section II). The initial
population of chromosomes was randomly generated and
consisted of 50 individuals. For each considered ANN, 1000
runs of the algorithm with NW values, according to the
equation (2), were made. The terminating criterion was the
precision of the best individual’s mean square error equal to
1.0e-3.0To make a fair comparison, both algorithms started
their evolution with the same initial conditions (size of a
population, ANN structure, absence of other genetic
operators). The purpose of this comparative analysis was to
evaluate the performance of both mutation techniques for
ANNs of different complexity. For different ANN
architectures we provided 1000 runs of both algorithms and as
a determined precision between the desired and actual outputs
was reached, the algorithms stopped their work. As a quality
measure the average number of iterations was used, at which
the optimal solutions were found. In Fig. 1 the comparative
results of both algorithms are presented. Table I presents the
average time in ms, needed to find the optimal solutions.

1-3 1-5 2-2 2-4 2-6 3-3 3-5 4-2 4-4 4-6 5-3 5-5

15

18

21

24

27

45

60

75

90

Ite
ra

tio
ns

ANN architecture (number of hidden layers-number of neurons)

 NW-based EP
 CEP

Fig. 1 Average number of iterations needed to find an optimal set of

connection weights for NW-based EP and CEP

Simulations were also carried out to determine the
percentage of successful mutations (percent of mutated
chromosomes that reached the offspring population). The
results showed that the average rate of successfully mutated
chromosomes increases with the complexity of an ANN
architecture. In comparison to other self-adaptive strategies,
which have limited average improvement, determined by the
1/5 success rule [22] (the maximal rate of improved
chromosomes), the proposed NW-strategy adjusts the
percentage of successful mutations depending on the
complexity of a given topology. In other words the rate of
mutated chromosomes increases with the increment of hidden

layers and neurons on them. This together with the optimal
step size ensures fast population improvement. For the most
complex ANN (with 5 hidden layers and 6 neurons per hidden
layer) considered, approximately 24% of all chromosomes
undergoing mutation improved their values at each stage of
evolution.

1E-20 1E-17 1E-14 1E-11 1E-8 1E-5 0,01

10

100

1000

10000

100000

 NW-based EP
 CEP

Ite
ra

tio
ns

Precision

Fig. 2 Algorithms resistance to a premature convergence to a local

optimum: ability to achieve a machine precision

TABLE I
AVERAGE TIME, NEEDED TO ALGORITHMS CONVERGENCE

ANN architecture Average time, ms
Hidden
layers

Hidden neurons
(average) CEP NW-based EP

1 2 8.8 1.7
1 3 12.6 4.8
1 4 19.4 5.9
1 5 29.1 8.0
1 6 40.9 10.4
2 2 10.3 2.6
2 3 17.8 6.2
2 4 24.7 7.8
2 5 34.3 11.0
2 6 39.1 13.8
3 2 13.5 3.8
3 3 22.0 8.1
3 4 28.2 9.7
3 5 36.0 13.2
3 6 40.6 16.7
4 2 15.0 5.0
4 3 27.2 10.1
4 4 30.8 11.7
4 5 40.6 15.8
4 6 45.7 19.7
5 2 18.5 6.6
5 3 33.1 12.4
5 4 36.8 13.5
5 5 45.7 18.3
5 6 50.9 22.8

In the described experiments above the algorithms stopped,
when the MSE of the best chromosome in the population
achieved the predefined precision equal to 1.0e-3.0 (the
algorithm found a set of connection weights could solve the
problem with the precision 1.0e-3.0). To study both

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

847International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

algorithms’ ability to find solutions with the high precision
(and thus to extend the search space and investigate
algorithms resistance to convergence to a local instead of a
global optimum) we provided a set of runs with the stopping
condition equal to a machine precision. The tests showed that
the NW-based algorithm is able to find solutions of better
quality and is likely to be resistant to a premature convergence
to local minima, while the self-adaptive Gaussian mutation is
unable to find solutions with a machine precision. Fig. 2
presents an example of both algorithms’ convergence for the
ANN with 1 hidden layer and 3 neurons on it.

IV. THE MACKEY-GLASS CHAOTIC TIME SERIES PREDICTION
In the second set of experiments we applied the NW-

mutation strategy to the simultaneous evolution of connection
weights and architectures of ANN and tested it on the problem
of predicting the Mackey-Glass chaotic time series [23],
which is generated by the following differential equation:

)(1
)()(10 τ

ταβ
−+

−
+=

tx
txtx

dt
dx

where α = 0.2, β = –0.1, τ = 17 (as mentioned by [19, 23], the
system shows chaotic behavior when τ > 16.8). The input
consists of four variables x(t), x(t – 6), x(t – 12) and x(t – 18),
the predicting value is x(t + 6) and the time step is one.
Fourth-order Runge-Kutta method with initial conditions x(0)
= 1.2, x(t – τ) = 0 for 0 ≤ t ≤ τ was used to generate data for
Mackey-Glass time series. 500 patterns (of point 118 to 617)
were considered as training data, the following 500 samples
being used as test data. The values of training and testing
errors were rescaled linearly to between 0.1 and 0.9. The
experiments were made in order to determine the best and the
average prediction errors for small and large ANNs. In order
to compare the results of NW-based algorithm with the
existing approaches, we used the normalized root-mean-
square (RMS) error to evaluate the performance of the NW-
based mutation strategy. The RMS is determined by the RMS
values of the absolute prediction error Δt = 6, divided by the
standard deviation of x(t).

[]
2
1

2

2
1

2

)(

)(),(

xx

ttxttx
error

pred

−

Δ+−Δ
=

As mentioned by [21], the prediction is perfect if RMS = 0;

if RMS = 1 the prediction is not better than a constant
predictor. The following parameters have been used in
experiments to evolve ANNs: the population size 50, the
maximum number of generations 150, the number of hidden
nodes for each individual in the initial population was
generated uniformly at random between 8 and 16, and the
number of mutated hidden nodes 1. Two types of tests have
been made for the purpose of 1) studying algorithm’s
generalization ability, i.e. ability to produce compact ANNs
with low training and testing errors and 2) obtaining the

smallest prediction error independent of ANN’s complexity.
The results of the first set of experiments were compared with
those, obtained by the EPNet algorithm [19], which produces
compact ANNs with sufficiently small prediction errors in
comparison with BP (back-propagation) and CC (cascade-
correlation) learning techniques, considered in [19].
Unfortunately, the EPNet does not provide the smallest
prediction error of large networks (which usually have higher
precision of prediction than small networks), since it searches
a large space and requires long computation time [19]. The
results of the second set of tests were compared with those
evolved by the algorithm, based on the flexible neural tree
model (FNT) [20] (though the comparison is not fair, since
FNT algorithm uses adapted to this problem exponential
instead of sigmoid function to transform neurons’ input
signals, which increases precision of prediction, but takes long
computation time to achieve it). Table II shows the best and
the average results of the NW-based strategy for first and
second sets of tests over 50 runs of the algorithm. Fig. 3
demonstrates the work of the algorithm: the evolution of mean
of the average normalized RMSE. Table III presents the
generalization results comparison among the NW-based,
EPNet and some other learning algorithms. Table IV presents
the best training errors of large ANNs and the number of
generations at which they were found for NW-based and FNT
algorithms.

TABLE II

THE BEST AND THE AVERAGE RESULTS PRODUCED BY THE NW-BASED
STRATEGY FOR THE MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM

 1st experiments 2nd experiments
Number of Connections 96 202
Aver. Num. of Connect. 98.21 202.5

Best Training Error 0.01203 0.00728
Aver. Training Error 0.01302 0.00742

Best Testing Error 0.01218 0.00735
Average Testing Error 0.01230 0.00751
Number of Generation 64 126
Aver. Num. of Gener. 78 144

TABLE III

COMPARATIVE RESULTS OF ALGORITHMS FOR SMALL NETWORKS FOR THE
MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM

Algorithm Number of connections Testing Error
NW-based EP 96 0.01 (0.01218)

EPNet 103 0.02 (0.0152)
BP 540 0.02

CC Learning 693 0.06

TABLE IV
BEST PREDICTION ERRORS OF NW-BASED AND FNT ALGORITHMS FOR THE

MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM
Algorithm Best RMSE (Training) Generation

NW-based EP 0.00728 126
FNT 0.006901 135

The following observations can be made from the obtained

results. First, they demonstrate that the NW-based algorithm
evolves much more compact ANNs with smaller prediction

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

848International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

error than other considered algorithms and indicated
insignificant distinctions between the best training and testing
errors. Second, the NW-based strategy is able to produce
ANNs with good generalization ability. The smallest ANN
produced by NW-based strategy used 96 connections to
achieve the smallest prediction error 0.01203, while the
average number of connections was 98.21. This means,
therefore, that the NW-based algorithm can achieve low error
and compact ANN. Finally, the proposed algorithm was able
to evolve ANNs with the comparable precision of prediction
and showed quick convergence of evolving large networks –
the best prediction error 0.00728 was indicated by the ANN
with 202 connections; this result was achieved on the 126th
generation.

0 50 100 150

0,015

0,030

0,045

 Training set
 Testing set

M
ea

n
of

 A
ve

ra
ge

 N
or

m
al

iz
ed

 R
M

SE

Number of Generations

Fig. 3 Algorithm’s work: the evolution of the mean RMSE

V. CONCLUSION
In this paper we described a mutation-based EP approach

for evolving feed-forward ANNs, which allows the
simultaneous adaptation of the mutation strength to an ANN’s
structure and a particular chromosome. In comparison with
existing mutation algorithms it utilizes not only genotype
information, but also phenotype information. Phenotype
information is included in the novel self-adaptive control
parameter called the network weight (NW) (see equation (2)),
which depends on a total number of hidden layers and an
average number of neurons on hidden layers, and thus
explicitly describes an ANN’s “internal” architecture. The
experiments on 4 high- and 4 low-dimensional minimization
functions (provided in Section II) showed that the NW value
is defined by the Fermi-Dirac-like function (see equation (2)).
Genotype information is represented by the MSE of every
individual.

The comparative analysis to the classical EP (CEP)
algorithm showed that the NW-based EP enables faster
convergence to optimal solution as well as is more resistant to
the premature convergence to local instead of global optima
(Section III Figs. 1, 2, Table I). The results of second
experiments showed that the proposed algorithm produces

ANNs with good generalization ability: it was able to evolve
much more compact ANNs and showed very competitive
prediction errors for both large and small networks (Section
IV, Tables II, III, IV).

By adapting the step size according to the information
derived from the phenotype and the genotype, the NW-based
EP strategy enables the algorithm to increase the mutation step
size and percentage of successful mutations. This ensures a
significant improvement of the population at each stage of
evolution, which allows the finding of solutions of good
quality and leads to a rapid convergence of the algorithm to
optima. Another advantage of the described strategy is that it
does not contain a priori knowledge of the problem domain
and is independent of the ANN’s “external” architecture – the
number of input and output neurons, conditioned by a given
task, which makes it widely applicable.

ACKNOWLEDGMENT
The authors would like to thank Alexander Reichel for his

help with the mathematical representation of the NW values’
dependency on ANN’s “internal” structure (the Fermi-Dirac-
like function). We would also like to thank Angelos Molfetas
for the constructive comments and valuable discussions,
which have helped to improve this manuscript.

REFERENCES
[1] X. Yao, “Evolutionary artificial neural networks”, in Encyclopedia of

Computer Science and Technology, Vol. 33, New York: Marcel Dekker,
pp. 137–170, 1995

[2] X. Yao, “Evolving Artificial Neural Networks”, in Proc. of the IEEE, 87
(9), pp. 1423-1447, 1999

[3] D. B. Fogel, “Evolving Neural Networks: Selected Medical Applications
and the Effects of Variation Operators”, Modeling and Simulation:
Theory and Practice – A Memorial Volume for Professor Walter J.
Karplus, Kluwer Academic Press, Boston, MA, pp. 217-248, 2003

[4] D. G. Landavazo and G. B. Fogel, “Evolved Neural Networks for
Quantitative Structure-Activity Relationships of Anti-HIV Compounds”,
in Proc. of the IEEE Congress on Evolutionary Computation, Vol. 1,
Honolulu, HI, USA, pp. 199-204, 2002

[5] A. Abraham, “Meta-Learning Evolutionary Artificial Neural Networks”,
Neurocomputing Journal, Elsevier Science, Netherlands, Vol. 56c, pp.
1-38, 2004

[6] A. E. Eiben, R. Hinterding, Z. Michalewicz, “Parameter Control in
Evolutionary Algorithms”, IEEE Trans. on Evolutionary Computation,
Vol. 3, pp. 124-141, 2000

[7] R. Hinterding, “Gaussian mutation and self-adaption for numeric genetic
algorithms”, in Proc. of the Second IEEE Conference on Evolutionary
Computation, pp. 384-389, 1995

[8] A. Jain, D. Fogel. “Case studies in applying fitness distributions in
evolutionary algorithms: I. Simple neural networks and Gaussian
mutation”, Applications and Science of Computational Intelligence III,
Proc. SPIE, Vol. 4055, pp. 168-175, 2000

[9] P. A. Castillo, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto,
“Evolving Multilayer Perceptrons”, Neural Processing Letters 12(2),
pp.115-127, 2000

[10] J. Branke, “Evolutionary approaches to dynamic optimization problems
– a survey”, GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pp. 134-137, 1999

[11] D. B. Fogel and K. Chellapilla, “Revisiting evolutionary programming”,
in SPIE AeroSense'98, Applications and Science of Computational
Intelligence, Orlando, FL, pp. 2-11, 1998

[12] W.-M. Lippe, “Soft-Computing mit Neuronalen Netzen, Fuzzy-Logic
und Evolutionären Algorithmen”, Springer-Verlag, Berlin Heidelberg,
2006

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

849International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

[13] H. Abbass and R. Sarker, “Simultaneous evolution of architectures and
connection weights in anns”, in Artificial Neural Networks and Expert
Systems Conference, Dunedin, New Zealand, pp. 16-21, 2001

[14] Lock and C. Giraud-Carrier. “Evolutionary Programming of Near-
Optimal Neural Networks”, in Proc. of the Fourth International
Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA99), Springer-Verlag, pp. 302-306, 1999

[15] X. Yao and Y. Liu, “Fast Evolutionary Programming”, in Proc. of the
Fifth Annual Conference on Evolutionary Programming (EP'96), the
MIT Press, San Diego, CA, USA, 29/2-2/3/96. pp. 451-460, 1996

[16] X. Yao and Y. Liu, “Fast evolution strategies,” Control and Cybernetics,
26(3), pp. 467-496, 1997

[17] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster”,
IEEE Transactions on Evolutionary Computation, pp. 82-102, 1999

[18] K. Davoian, A.Reichel, W.-M. Lippe, “Comparison and analysis of
mutation-based evolutionary algorithms for ANN parameters
optimization”, in Proc. of the 2006 International conference on Data
Mining (DMIN’06),CSREA Press, 2006

[19] X. Yao, Y. Liu, “A new evolutionary system for evolving artificial
neural networks”, IEEE Transactions on Neural Networks, 8(3): 694–
713, May 1997

[20] Y. Chen, B. Yang, J. Dong, A. Abraham, “Time series forecasting using
flexible neural tree model”, Information Sciences: an International
Journal, Vol 174, pp. 219-235, 2005

[21] W. Greiner, L. Neise, H. Stöcker, “Thermodynamics and statistical
mechanics”, Springer-Verlag, New York [u.a.] 2000

[22] I. Rechenberg, “Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution“, Fromman-Holzboog
Verlag, Stuttgart, Germany, 1973

[23] M. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems”, Sci., vol. 197, p. 287, 1977

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

850International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

60
.p

df

