
 

 

  
Abstract—Evolutionary Programming (EP) represents a 

methodology of Evolutionary Algorithms (EA) in which mutation is 
considered as a main reproduction operator. This paper presents a 
novel EP approach for Artificial Neural Networks (ANN) learning. 
The proposed strategy consists of two components: the self-adaptive, 
which contains phenotype information and the dynamic, which is 
described by genotype. Self-adaptation is achieved by the addition of 
a value, called the network weight, which depends on a total number 
of hidden layers and an average number of neurons in hidden layers. 
The dynamic component changes its value depending on the fitness 
of a chromosome, exposed to mutation. Thus, the mutation step size 
is controlled by two components, encapsulated in the algorithm, 
which adjust it according to the characteristics of a predefined ANN 
architecture and the fitness of a particular chromosome. The 
comparative analysis of the proposed approach and the classical EP 
(Gaussian mutation) showed, that that the significant acceleration of 
the evolution process is achieved by using both phenotype and 
genotype information in the mutation strategy. 
 

Keywords—Artificial Neural Networks (ANN), Learning 
Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.  

I. INTRODUCTION 
UTATION-BASED Evolutionary Algorithms, also 
known as Evolutionary Programming,  have been 

successfully applied not only to combinatorial optimization 
problems but also to other areas of Artificial Intelligence (AI), 
where they are used as subsidiary evolutionary approaches for 
some parameters optimization, e.g. for ANNs connection 
weights training [1-13]. The classical strategy used in EP is 
Gaussian mutation operator, denoted as the classical EP 
(CEP), based on a standard normal distribution [1, 5-9]. The 
main disadvantage of this approach is its slow convergence to 
a near-optimal solution. To overcome this drawback research 
has been devoted towards the development of new mutation 
strategies. Yao and Liu [15, 16] have proposed an alternative 
mutation technique, called the Fast Evolutionary 
Programming (FEP), which is based on the Cauchy 
distribution function. Their comparative study of both 
mutation-based algorithms showed that solving high-
dimensional optimization problems, the FEP converges 
quicker to minima than the CEP. Furthermore, Yao et al. [17] 
have developed an improved strategy of FEP, called the 
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improved Fast Evolutionary Programming (IFEP).  
Detailed analysis of existing approaches, presented in [18] 

showed that they utilize only genotype information, i.e. 
depend on a total number of connection weights between 
neurons. We have assumed, that the efficiency of a mutation 
step size may depend not only on the genotype, but also on the 
phenotype (according to the definition given by [1, 2] the 
actual ANN architecture (a total number of neurons and 
layers) is called phenotype and connection weights (their 
values and a total number) represent genotype). In this paper 
we propose a new self-adaptive mutation strategy based on a 
uniform distribution for ANNs training. In comparison with 
existing EP strategies, it contains not only genotype, but 
includes also the phenotype information The phenotype 
information in the proposed strategy is incorporated in a 
value, called the network weight (NW), which adapts the 
mutation operator to a given ANN architecture.  The network 
weight value depends on the number of hidden layers and the 
average number of neurons in hidden layers and thus contains 
information about an ANN’s “internal” structure. This 
relationship is determined by the Fermi-Dirac-like function.  

The dynamic part of the proposed strategy is determined by 
the fitness function, which is defined by the individual’s mean 
square error (MSE) between the expected and the actual 
outputs over all examples of a considered task. This involves a 
dynamic component in the mutation operator, which changes 
its value during run time and adjusts the mutation strength 
proportional to the fitness of a particular chromosome. These 
two components together (the NW and the MSE) encapsulate 
all necessary information about phenotype and genotype of a 
given problem, which enables to adapt the mutation strength 
according to the characteristics of ANN’s “internal” 
architecture and fitness of a particular chromosome; this 
increases the efficiency of reproduction (percentage of 
successful mutations) and leads to a quick convergence to an 
optimum. 

Thus, the evolution of ANN architectures and connection 
weights is driven by two components in the mutation 
algorithm: the MSE, which changes its value during run time 
and adjusts the mutation strength proportional to the fitness of 
a particular chromosome, and the NW, which increases the 
efficiency of reproduction by adapting the mutation step size 
according to the size of the given ANN topology. 

We provided experimental study of a NW-based EP for the 
purpose of evaluating the performance of algorithm. In order 
to determine the speed of algorithm’s work for ANNs of 
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different complexity, we considered predefined ANNs and 
evolved only the connection weights. The results were 
compared with those, obtained by the CEP (Gaussian 
mutation). To study the generalization ability of ANNs 
evolved by the NW-based EP strategy, the algorithm has been 
applied to the simultaneous evolution of connection weights 
and architectures and tested on the problem of predicting 
Mackey-Glass chaotic time series. The results of these 
simulations were compared with those, obtained by EPNet 
[19] and FNT [20] algorithms. 

This paper is organized as follows: section II describes the 
NW-based EP. Section III and IV present and analyze the 
experimental results. Section V concludes this paper. 

II. THE NW-BASED EVOLUTIONARY PROGRAMMING 
 
Let us consider an initial population consisting of M 

randomly generated chromosomes. Each chromosome Si = (s1, 
s2,…, sm), ∀ i ∈{1,…, M}, represents one possible set of 
connection weights, where m is a total number of connections 
between neurons and sj ∈  [-1.0, 1.0] for j∈{1, …, m}. The 
fitness of a particular chromosome depends on the considered 
task and is assigned by a MSE. All chromosomes of parental 
population take part in new individuals’ creation, i.e. expose 
to mutation. In the described algorithm each new chromosome 
is formed by applying mutation to one gene, randomly chosen 
out of a parental individual, which is changed by the 
following formula: 

 
    ( )randdynwjj NNnlNss ),(0.1 +=′             (1) 

 
where sj is a gene chosen out of a chromosome S, and 
mutated; Ndyn – the MSE of Si and Nrand is a uniformly 
distributed random value (Nrand ∈  [-1.0, 1.0]). The NW value 
Nw(l, n) is defined by the function (2), which depends on the 
number of hidden layers l and the average number of neurons 
on hidden layers n.  For each ANN the quantity Nw is 
calculated only once and does not change its value during the 
evolution, if we consider the evolution of connection weights 
in the environment determined by an ANN architecture; in 
case of simultaneous evolution of architectures and 
connection weights it becomes a new value every time when 
ANN’s architecture is changed. We provided extensive 
empirical tests, considering predefined ANNs (in order to find 
the best values of the NW with high precision, which 
significantly increase the mutation step size), and studied their 
dependency on the ANN architectures. The tests were 
provided for ANNs with 1-5 hidden layers and 2-6 neurons on 
each hidden layer, i.e. the simplest ANN had 1 hidden layer 
with 2 neurons and the most complex ANN had 5 hidden 
layers with 6 neurons on each layer. The following eight 
global minimisation problems, cited by [15], have been used 
to determine NW values: high-dimensional unimodal f1, f2 and 
multimodal f9, f10 functions (dimension 30); and low-
dimensional functions f15 (dimension 4), f16, f17 and f18 

(dimension 2) with only a few local minima. We considered 
eight functions of different complexity (the most difficult are 
multimodal functions where the number of local minima 
increases exponentially with the problem dimension) with the 
purpose of obtaining the generalised NW values, which 
increase the average improvement of the population 
independent of requirements of any given task, i.e. do not 
contain knowledge of a problem. The empirical results 
showed that the distribution of the optimal NW values is 
similar for all considered functions and depends on the total 
number of hidden layers and the average number of neurons 
on hidden layers, i.e. NW is related only with ANNs’ 
“internal” architecture. This relationship is defined by the 
Fermi-Dirac-like function and is calculated according to the 
following formula: 
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The value μ has the same physical sense as a chemical 

potential in thermodynamics and depends on the number of 
hidden layers (the original Fermi-Dirac function and included 
in it chemical potential μ are cited by [21]): 
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where the coefficients (constants) A1 = 3.0, B1 = 2.0, T1 = 0.4, 
A2 = 1.2, B2 = 3.2, T2 = 0.6 (the original Fermi-Dirac function 
depends on temperature T  [21]).  

As it is apparent from the equation (2), the behavior of its 
fractional part (right hand expression) is changed with the 
increment of hidden layers: up to 4 layers it becomes positive, 
and when the number of hidden layers is 4 it becomes zero 
(the exceptional case). This means, therefore, that the NW is 
independent of the average number of neurons and has 
optimal value 5.0. With more than 4 layers the fractional part 
of the expression (2) becomes negative. In spite of these 
characteristics of the equation (2), which are conditioned by 
the adjustment of the optimal mutation step size to a particular 
ANN architecture, the NW values are always positive. 

The component Ndyn in equation (1) represents the genotype 
information, that is, the MSE which is dynamic component in 
the sense that it is different for every mutated chromosome. It 
enables the control of a randomly generated value and the 
adjustment of the mutation strength to an individual 
depending on its fitness, i.e. the higher the error of a 
chromosome, the higher the step size. 

After mutation process the fitness values of parental and 
offspring chromosomes are compared and the best individual 
reaches the offspring population. The evolution cycle is 
repeated until certain halting criteria are satisfied. 
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III. THE XOR SIMULATIONS 
The first set of experiments was conducted in order to 

compare the NW-based EP and the CEP approaches. In these 
experiments we tested the algorithm on the simple problem – 
XOR function, and evolved the connection weights, 
considering the same ANN architectures as those used for the 
determination of the NW values (Section II). The initial 
population of chromosomes was randomly generated and 
consisted of 50 individuals. For each considered ANN, 1000 
runs of the algorithm with NW values, according to the 
equation (2), were made. The terminating criterion was the 
precision of the best individual’s mean square error equal to 
1.0e-3.0To make a fair comparison, both algorithms started 
their evolution with the same initial conditions (size of a 
population, ANN structure, absence of other genetic 
operators). The purpose of this comparative analysis was to 
evaluate the performance of both mutation techniques for 
ANNs of different complexity. For different ANN 
architectures we provided 1000 runs of both algorithms and as 
a determined precision between the desired and actual outputs 
was reached, the algorithms stopped their work. As a quality 
measure the average number of iterations was used, at which 
the optimal solutions were found. In Fig. 1 the comparative 
results of both algorithms are presented. Table I presents the 
average time in ms, needed to find the optimal solutions. 
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Fig. 1 Average number of iterations needed to find an optimal set of 

connection weights for NW-based EP and CEP 
 

Simulations were also carried out to determine the 
percentage of successful mutations (percent of mutated 
chromosomes that reached the offspring population). The 
results showed that the average rate of successfully mutated 
chromosomes increases with the complexity of an ANN 
architecture. In comparison to other self-adaptive strategies, 
which have limited average improvement, determined by the 
1/5 success rule [22] (the maximal rate of improved 
chromosomes), the proposed NW-strategy adjusts the 
percentage of successful mutations depending on the 
complexity of a given topology. In other words the rate of 
mutated chromosomes increases with the increment of hidden 

layers and neurons on them. This together with the optimal 
step size ensures fast population improvement. For the most 
complex ANN (with 5 hidden layers and 6 neurons per hidden 
layer) considered, approximately 24% of all chromosomes 
undergoing mutation improved their values at each stage of 
evolution. 
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Fig. 2 Algorithms resistance to a premature convergence to a local  

optimum: ability to achieve a machine precision 
   

TABLE I 
AVERAGE TIME, NEEDED TO ALGORITHMS CONVERGENCE 

ANN architecture Average time, ms 
Hidden 
layers 

Hidden neurons 
(average) CEP NW-based EP 

1 2 8.8 1.7 
1 3 12.6 4.8 
1 4 19.4 5.9 
1 5 29.1 8.0 
1 6 40.9 10.4 
2 2 10.3 2.6 
2 3 17.8 6.2 
2 4 24.7 7.8 
2 5 34.3 11.0 
2 6 39.1 13.8 
3 2 13.5 3.8 
3 3 22.0 8.1 
3 4 28.2 9.7 
3 5 36.0 13.2 
3 6 40.6 16.7 
4 2 15.0 5.0 
4 3 27.2 10.1 
4 4 30.8 11.7 
4 5 40.6 15.8 
4 6 45.7 19.7 
5 2 18.5 6.6 
5 3 33.1 12.4 
5 4 36.8 13.5 
5 5 45.7 18.3 
5 6 50.9 22.8 

 
 

In the described experiments above the algorithms stopped, 
when the MSE of the best chromosome in the population 
achieved the predefined precision equal to 1.0e-3.0 (the 
algorithm found a set of connection weights could solve the 
problem with the precision 1.0e-3.0). To study both 
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algorithms’ ability to find solutions with the high precision 
(and thus to extend the search space and investigate 
algorithms resistance to convergence to a local instead of a 
global optimum) we provided a set of runs with the stopping 
condition equal to a machine precision. The tests showed that 
the NW-based algorithm is able to find solutions of better 
quality and is likely to be resistant to a premature convergence 
to local minima, while the self-adaptive Gaussian mutation is 
unable to find solutions with a machine precision. Fig. 2 
presents an example of both algorithms’ convergence for the 
ANN with 1 hidden layer and 3 neurons on it. 

IV. THE MACKEY-GLASS CHAOTIC TIME SERIES PREDICTION 
In the second set of experiments we applied the NW-

mutation strategy to the simultaneous evolution of connection 
weights and architectures of ANN and tested it on the problem 
of predicting the Mackey-Glass chaotic time series [23], 
which is generated by the following differential equation: 

)(1
)()( 10 τ

ταβ
−+

−
+=

tx
txtx

dt
dx  

 
where α = 0.2, β = –0.1, τ = 17 (as mentioned by [19, 23], the 
system shows chaotic behavior when τ > 16.8). The input 
consists of four variables x(t), x(t – 6), x(t – 12) and x(t – 18), 
the predicting value is x(t + 6) and the time step is one. 
Fourth-order Runge-Kutta method with initial conditions x(0) 
= 1.2, x(t – τ) = 0 for 0 ≤ t ≤ τ  was used to generate data for 
Mackey-Glass time series. 500 patterns (of point 118 to 617) 
were considered as training data, the following 500 samples 
being used as test data. The values of training and testing 
errors were rescaled linearly to between 0.1 and 0.9. The 
experiments were made in order to determine the best and the 
average prediction errors for small and large ANNs. In order 
to compare the results of NW-based algorithm with the 
existing approaches, we used the normalized root-mean-
square (RMS) error to evaluate the performance of the NW-
based mutation strategy. The RMS is determined by the RMS 
values of the absolute prediction error Δt = 6, divided by the 
standard deviation of x(t). 
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As mentioned by [21], the prediction is perfect if RMS = 0; 

if RMS = 1 the prediction is not better than a constant 
predictor. The following parameters have been used in 
experiments to evolve ANNs: the population size 50, the 
maximum number of generations 150, the number of hidden 
nodes for each individual in the initial population was 
generated uniformly at random between 8 and 16, and the 
number of mutated hidden nodes 1. Two types of tests have 
been made for the purpose of 1) studying algorithm’s 
generalization ability, i.e. ability to produce compact ANNs 
with low training and testing errors and 2) obtaining the 

smallest prediction error independent of ANN’s complexity. 
The results of the first set of experiments were compared with 
those, obtained by the EPNet algorithm [19], which produces 
compact ANNs with sufficiently small prediction errors in 
comparison with BP (back-propagation) and CC (cascade-
correlation) learning techniques, considered in [19]. 
Unfortunately, the EPNet does not provide the smallest 
prediction error of large networks (which usually have higher 
precision of prediction than small networks), since it searches 
a large space and requires long computation time [19]. The 
results of the second set of tests were compared with those 
evolved by the algorithm, based on the flexible neural tree 
model (FNT) [20] (though the comparison is not fair, since 
FNT algorithm uses adapted to this problem exponential 
instead of sigmoid function to transform neurons’ input 
signals, which increases precision of prediction, but takes long 
computation time to achieve it). Table II shows the best and 
the average results of the NW-based strategy for first and 
second sets of tests over 50 runs of the algorithm. Fig. 3 
demonstrates the work of the algorithm: the evolution of mean 
of the average normalized RMSE. Table III presents the 
generalization results comparison among the NW-based, 
EPNet and some other learning algorithms. Table IV presents 
the best training errors of large ANNs and the number of 
generations at which they were found for NW-based and FNT 
algorithms. 

 
TABLE II 

THE BEST AND THE AVERAGE RESULTS PRODUCED BY THE NW-BASED 
STRATEGY FOR THE MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM 

 1st experiments 2nd experiments 
Number of Connections 96 202 
Aver. Num. of Connect. 98.21 202.5 

Best Training Error 0.01203 0.00728 
Aver. Training Error 0.01302 0.00742 

Best Testing Error 0.01218 0.00735 
Average Testing Error 0.01230 0.00751 
Number of Generation 64 126 
Aver. Num. of Gener. 78 144 

 
TABLE III 

COMPARATIVE RESULTS OF ALGORITHMS FOR SMALL NETWORKS FOR THE 
MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM 

Algorithm Number of connections Testing Error 
NW-based EP 96 0.01 (0.01218) 

EPNet 103 0.02 (0.0152) 
BP 540 0.02 

CC Learning 693 0.06 
 

TABLE IV 
BEST PREDICTION ERRORS OF NW-BASED AND FNT ALGORITHMS FOR THE 

MACKEY-GLASS CHAOTIC TIME SERIES PROBLEM 
Algorithm Best RMSE (Training) Generation 

NW-based EP 0.00728 126 
FNT 0.006901 135 

 
 
The following observations can be made from the obtained 

results. First, they demonstrate that the NW-based algorithm 
evolves much more compact ANNs with smaller prediction 
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error than other considered algorithms and indicated 
insignificant distinctions between the best training and testing 
errors. Second, the NW-based strategy is able to produce 
ANNs with good generalization ability. The smallest ANN 
produced by NW-based strategy used 96 connections to 
achieve the smallest prediction error 0.01203, while the 
average number of connections was 98.21. This means, 
therefore, that the NW-based algorithm can achieve low error 
and compact ANN. Finally, the proposed algorithm was able 
to evolve ANNs with the comparable precision of prediction 
and showed quick convergence of evolving large networks – 
the best prediction error 0.00728 was indicated by the ANN 
with 202 connections; this result was achieved on the 126th 
generation. 
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Fig. 3 Algorithm’s work: the evolution of the mean RMSE 

 

V. CONCLUSION 
In this paper we described a mutation-based EP approach 

for evolving feed-forward ANNs, which allows the 
simultaneous adaptation of the mutation strength to an ANN’s 
structure and a particular chromosome. In comparison with 
existing mutation algorithms it utilizes not only genotype 
information, but also phenotype information. Phenotype 
information is included in the novel self-adaptive control 
parameter called the network weight (NW) (see equation (2)), 
which depends on a total number of hidden layers and an 
average number of neurons on hidden layers, and thus 
explicitly describes an ANN’s “internal” architecture. The 
experiments on 4 high- and 4 low-dimensional minimization 
functions (provided in Section II) showed that the NW value 
is defined by the Fermi-Dirac-like function (see equation (2)). 
Genotype information is represented by the MSE of every 
individual.   

The comparative analysis to the classical EP (CEP) 
algorithm showed that the NW-based EP enables faster 
convergence to optimal solution as well as is more resistant to 
the premature convergence to local instead of global optima 
(Section III Figs. 1, 2, Table I). The results of second 
experiments showed that the proposed algorithm produces 

ANNs with good generalization ability: it was able to evolve 
much more compact ANNs and showed very competitive 
prediction errors for both large and small networks (Section 
IV, Tables II, III, IV). 

By adapting the step size according to the information 
derived from the phenotype and the genotype, the NW-based 
EP strategy enables the algorithm to increase the mutation step 
size and percentage of successful mutations. This ensures a 
significant improvement of the population at each stage of 
evolution, which allows the finding of solutions of good 
quality and leads to a rapid convergence of the algorithm to 
optima. Another advantage of the described strategy is that it 
does not contain a priori knowledge of the problem domain 
and is independent of the ANN’s “external” architecture – the 
number of input and output neurons, conditioned by a given 
task, which makes it widely applicable. 
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