Search results for: Positive energy districts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4178

Search results for: Positive energy districts

2588 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet

Abstract:

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
2587 The Upconversion of co-doped Nd3+/Er3+Tellurite Glass

Authors: Azman, K., Sahar, M.R., Rohani, M.S.

Abstract:

Series of tellurite glass of the system 78TeO2-10PbO- 10Li2O-(2-x)Nd2O3-xEr2O3, where x = 0.5, 1.0, 1.5 and 2.0 was successfully been made. A study of upconversion luminescence of the Nd3+/Er3+ co-doped tellurite glass has been carried out. From Judd-Ofelt analysis, the experimental lifetime, exp. τ of the glass serie are found higher in the visible region as they varies from 65.17ms to 114.63ms, whereas in the near infrared region (NIR) the lifetime are varies from 2.133ms to 2.270ms. Meanwhile, the emission cross section,σ results are found varies from 0.004 x 1020 cm2 to 1.007 x 1020 cm2 with respect to composition. The emission spectra of the glass are found been contributed from Nd3+ and Er3+ ions by which nine significant transition peaks are observed. The upconversion mechanism of the co-doped tellurite glass has been shown in the schematic energy diagrams. In this works, it is found that the excited state-absorption (ESA) is still dominant in the upconversion excitation process as the upconversion excitation mechanism of the Nd3+ excited-state levels is accomplished through a stepwise multiphonon process. An efficient excitation energy transfer (ET) has been observed between Nd3+ as a donor and Er3+ as the acceptor. As a result, respective emission spectra had been observed.

Keywords: Tellurite glass, co-dopant, upconvertionluminescence spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2586 The Effect of Vertical Shear-Link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: Vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
2585 Gas Injection Transport Mechanism for Shale Oil Recovery

Authors: Chinedu Ejike

Abstract:

The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. Gas injection enhanced oil recovery offers a significant benefit in optimizing recovery of shale oil. This could be either through huff and puff, gas flooding, and cyclic gas injection. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research evaluates the parameters that influence gas injection transport mechanism. Understanding the process could accelerate recovery by two to three times.

Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
2584 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive  control system device is the primary objective of this study.  Expanding upon the use of control devices in wind and earthquake  hazard reduction has led to development of various control systems.  The advantage of non-linearity characteristics in a passive control  device and the optimal control method using LQR algorithm are  explained in this study. Finally, this paper introduces a simple  approach to determine optimum parameters of a nonlinear viscous  damper for vibration control of structures. A MATLAB program is  used to produce the dynamic motion of the structure considering the  stiffness matrix of the SDOF frame and the non-linear damping  effect. This study concluded that the proposed system (variable  damping system) has better performance in system response control  than a linear damping system. Also, according to the energy  dissipation graph, the total energy loss is greater in non-linear  damping system than other systems.

 

Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3595
2583 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2582 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat

Authors: Saurabh Chanana, Monika Arora

Abstract:

Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. 

Keywords: Demand response, Home energy management Programmable communicating thermostat, Thermostatically controlled appliances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026
2581 Optimization of Solar Tracking Systems

Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer

Abstract:

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.

Keywords: Clouds detection, fuzzy inference systems, images processing, sun trackers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
2580 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
2579 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

Authors: S. Totong, K. Faungnawakij, N. Laosiripojana

Abstract:

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production. 

Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
2578 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10588
2577 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2576 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, PVDG, firefly algorithm, voltage fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
2575 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: Gypsum board, anchor, shear test, cyclic loading, load-unload curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
2574 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
2573 Evaluation of an Offshore Wind Power Project: Economic, Strategic and Environmental Value

Authors: Paula Ferreira, Filipa Vieira

Abstract:

The use of wind energy for electricity generation is growing rapidly across the world and in Portugal. However, the geographical characteristics of the country along with the average wind regime and with the environmental restrictions imposed to these projects create limitations to the exploit of the onshore wind resource. The best onshore wind spots are already committed and the possibility of offshore wind farms in the Portuguese cost is now being considered. This paper aims to make a contribution to the evaluation of offshore wind power projects in Portugal. The technical restrictions are addressed and the strategic, environmental and financial interest of the project is analysed from the private company and public points of view. The results suggest that additional support schemes are required to ensure private investors interest for these projects. Assuming an approach of direct substitution of energy sources for electricity generation, the avoided CO2 equivalent emissions for an offshore wind power project were quantified. Based on the conclusions, future research is proposed to address the environmental and social impacts of these projects.

Keywords: Feed-in tariff, offshore wind power, project evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
2572 The Potential of 48V HEV in Real Driving

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.

Keywords: Customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3560
2571 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique

Authors: P. Kanakasabapathy, Radhika. S,

Abstract:

In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self scheduling to ensure profit for the plant.

Keywords: Ancillary services, BPSO, Power System Economics (Electricity markets), Self-Scheduling, Sliding Window Technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
2570 Tree Based Data Aggregation to Resolve Funneling Effect in Wireless Sensor Network

Authors: G. Rajesh, B. Vinayaga Sundaram, C. Aarthi

Abstract:

In wireless sensor network, sensor node transmits the sensed data to the sink node in multi-hop communication periodically. This high traffic induces congestion at the node which is present one-hop distance to the sink node. The packet transmission and reception rate of these nodes should be very high, when compared to other sensor nodes in the network. Therefore, the energy consumption of that node is very high and this effect is known as the “funneling effect”. The tree based-data aggregation technique (TBDA) is used to reduce the energy consumption of the node. The throughput of the overall performance shows a considerable decrease in the number of packet transmissions to the sink node. The proposed scheme, TBDA, avoids the funneling effect and extends the lifetime of the wireless sensor network. The average case time complexity for inserting the node in the tree is O(n log n) and for the worst case time complexity is O(n2).

Keywords: Data Aggregation, Funneling Effect, Traffic Congestion, Wireless Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
2569 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2568 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well

Authors: N. Tarom, M.M. Hossain

Abstract:

Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.

Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
2567 Conventional Design and Simulation of an Urban Hybrid Bus

Authors: A. Khanipour, K. M. Ebrahimi, W. J. Seale

Abstract:

Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.

Keywords: Hybrid Electric Vehicle, Hybridization, LEV, HEV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
2566 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: Slit circular shear panel damper, Hysteresis Characteristics, Slip length-to-width ratio, D/t ratio, FE analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
2565 The Self-Energy of an Ellectron Bound in a Coulomb Field

Authors: J. Zamastil, V. Patkos

Abstract:

Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.

Keywords: Hydrogen-like atoms, self-energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
2564 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: Maximum power point tracking, neural networks, photovoltaic, P&O.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2563 An Examination and Validation of the Theoretical Resistivity-Temperature Relationship for Conductors

Authors: Fred Lacy

Abstract:

Electrical resistivity is a fundamental parameter of metals or electrical conductors. Since resistivity is a function of temperature, in order to completely understand the behavior of metals, a temperature dependent theoretical model is needed. A model based on physics principles has recently been developed to obtain an equation that relates electrical resistivity to temperature. This equation is dependent upon a parameter associated with the electron travel time before being scattered, and a parameter that relates the energy of the atoms and their separation distance. Analysis of the energy parameter reveals that the equation is optimized if the proportionality term in the equation is not constant but varies over the temperature range. Additional analysis reveals that the theoretical equation can be used to determine the mean free path of conduction electrons, the number of defects in the atomic lattice, and the ‘equivalent’ charge associated with the metallic bonding of the atoms. All of this analysis provides validation for the theoretical model and provides insight into the behavior of metals where performance is affected by temperatures (e.g., integrated circuits and temperature sensors).

Keywords: Callendar–van Dusen, conductivity, mean free path, resistance temperature detector, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
2562 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning

Authors: Denise Levy, Helen J. Khoury

Abstract:

Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.

Keywords: Nuclear technology, multimedia learning tools, science museum, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
2561 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion post-combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
2560 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya

Authors: Farag Ahwide, Souhel Bousheha

Abstract:

A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).

Keywords: Energy yield, wind turbines, wind speed, wind power density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
2559 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180