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Fig. 2 Power curve under standard condition 

 
Fig. 2 shows the output characteristics P-V of PVG which is 

non-linear, with an operating point (MPP) depends on the 
temperature and irradiation level. 

In the following, we present the two intelligent controllers, 
and investigated here performance via numerical simulation. 

III. ARTIFICIAL NEURAL NETWORKS 
The artificial neural network (ANN) is considered as an 

assembly of elements of identical structure called cells (or 
neurons) interconnected like cells of the vertebrate nervous 
system. Each point of connection (called the coefficient or 
weight) between two cells acts as a synapse, the main element 
of interaction between neurons. These connections or synaptic 
weights have a role in the parallel operation and adaptive 
neural networks where the notion of connectionist [6]. 

Fig. 3 shows us the schematic representation of a simple 
artificial network model. The artificial neuron has as an input 
value the output product of other neurons or, at the initial 
level, the models input variables (input i, i = 1, 2, . . . input n). 
These values are then multiplied by a weight Wi and the sum 
of all these products (P) is fed to an activation function. The 
activation function alters the signal accordingly and passes the 
signal to the next neuron(s) until the output of the model is 
reached [5]. 

 

  
 

Fig. 3 Artificial neurons network 
 
The greatest advantage of ANNs over other modeling 

techniques is their capability to model complex, non-linear 
processes without having to assume the form of the 
relationship between input and output variables [8]. 

Learning in ANNs involves adjusting the weights of 
interconnections to achieve the desired input/output relation of 
the network. 

A. Description and Architecture the Proposed MMPT 
Neural controller 

Fig. 4 shows the architecture of proposed MPPT neural 
network intended to replace the MPPT controller which is 
selected as a static, multilayer network. 

ANN Controllers it consists of three layers as follows: 
• An input layer with two neurons (temperature T  and the 

irradiationsS ). 
• Two hidden layers: the first with 5 neurons and the second 

with 8 neurons. 
• An output layer with one neuron (ratio cyclic D). 

In addition, the activation functions are adopted for the 
hyperbolic sigmoid neurons entered and those of hidden layers 
whereas corresponding to the output neuron is chosen linear. 

 

 
Fig. 4 The proposed neural network architecture 

 
The Tests have shown that the most stable structure is that 

composed of five neurons in first hidden layer and eight 
neurons for the second hidden layer. The number of neurons in 
the hidden layer has been optimized empirically during the 
learning phase. It is also note worthy that the choice of the 
function activation of the hidden layer for which we opted not 
been adopted arbitrarily, but was chosen after several tests 
which showed that the function sigmoid hyperbolic converges 
faster by relative to the sigmoid tangential function during 
phase learning. 

IV. FUZZY LOGIC  
Fig. 5 shows the basic structure of FLC which are briefly 

presented below: 
 

 
Fig. 5 Basic structure of fuzzy logic control 

A. Fuzzification 
The system converts the actual inputs values E and CE into 

linguistic fuzzy sets using fuzzy membership function that can 
be used in inference engine. These variables are expressed in 
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terms of five linguistic variables (such as PB (positive big), PS 
(positive small), ZE (zero), NB (negative big), NS (negative 
small). 

B. Inference and Rule Base 
The rules base content all rule necessary to control system. 

The mechanism of inference allows obtaining, by using the 
membership of every linguistic variable and the rule base the 
membership function of under fuzzy set solution of the 
command. 

C. Deffuzification 
Having obtained under fuzzy set solution of the command, 

we need a numerical value for the command; the stage of the 
defuzzification allows obtaining this value. 

Fuzzy logic controllers (FLC) have the advantages of 
working with imprecise inputs, no need to have accurate 
mathematical model, and it can handle the non linearity [7]. 

The proposed FLC; it consists of two inputs and one output. 
The two FLC input variables are the error (E) and change of 
error (ΔE) that expressed by (2): 

 

   

               
( ) ( 1)( )
( ) ( 1)

( ) ( ) ( 1)

P n P nE n
V n V n

E n E n E n

− −⎧ =⎪ − −⎨
⎪Δ = − −⎩

                                   (2)   

       
where E  and EΔ  are the error and change in error, n is the 
sampling time, ( )P n  is the instantaneous power of the PVG, 
and ( )V n  is the corresponding instantaneous voltage. 

The membership function of the two input variables and the 
control duty cycle D used in our application are illustrated in 
Fig. 6. 

 

 
Fig. 6 Membership function of FLC 

V. SIMULATION STUDY 
Once our photovoltaic chain designed, and to verify the 

ability of our fuzzy controller to improve the performance 

obtained under the conventional MPPT controller, numerical 
simulation was performed for different conditions as follows:  

The first test consists to compare the performance of this 
controller in standard condition, solar irradiation =1000w/m2 

and temperature of 250C. Fig. 7 shows the result of the tracked 
power by the two controllers. 

 

 
Fig. 7 Provided power from ANN, FLC controller in standard 

condition 
 
As can be seen, the FLC is faster than the neural tracker, in 

addition the FLC presents oscillations before achieve the 
MPP. In standard conditions the two controllers presents no 
overshoot and the maximum power point is well monitored by 
the both. 

The next simulation is under rapid variation of temperature 
(increasing the temperature of 25°C to 45°C in 2 s) see Fig. 8.  

 

 
Fig. 8 Output power of PV for different irradiation 

 
Another simulation is under the rapid variation of solar 

irradiation (from 1000 w/m2 to 900 w/m2 through 940 w/m2); 
the results are shown in Fig. 9. 
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Fig. 9 Output power of PV for different irradiation 

 
According to the tests of variation of temperature and 

irradiation, we notice that the neural network controller 
behaves exactly as expected for different variations considered 
contrary to the FLC with presents some fluctuation. 

VI. CONCLUSION 
In this paper we have investigated two intelligent control 

techniques to control output power of the solar panel in order 
to obtain the maximum power possible, whatever the solar 
irradiation and temperature conditions. 

The design and simulation of neural network and fuzzy 
logic based MPPT was present. 

According to the obtained results we can say that use of 
intelligent controller to track the maximum power point in PV 
systems is very promising. Indeed the two controller have 
presents good performance: fast responses for FLC, no 
overshoot in neural network controller and some fluctuations 
in FLC one. 

Ongoing research, and in order to get the fast responses and 
no presence of fluctuations, the hybridation of the two 
controllers will be developed. 
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