Search results for: Hybrid Power Plant
2738 Hydrogen Production by Gasification of Biomass from Copoazu Waste
Authors: Emilio Delgado, William Aperador, Alis Pataquiva
Abstract:
Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor.Keywords: Copoazu, Gasification, Hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822737 Thermoelectric Generators as Alternative Source for Electric Power
Authors: L. C. Ding, Bradley. G. Orr, K. Rahaoui, S. Truza, A. Date, A. Akbarzadeh
Abstract:
The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.
Keywords: Electric power, heat transfer, renewable energy, thermoelectric generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17782736 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework for the development of a web-based instruction (WBI), which contributes towards instructional design and language development. WeCWI divides its contribution in instructional design into macro and micro perspectives. In macro perspective, being a 21st century educator by disseminating knowledge and sharing ideas with the in-class and global learners is initiated. By leveraging the virtue of technology, WeCWI aims to transform an educator into an aggregator, curator, publisher, social networker and ultimately, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective in instructional design draws attention to the pedagogical approaches focusing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches through free reading and enterprises, technology adds new dimensions and expands the boundaries of learning capacity. Lastly, WeCWI also imparts the fundamental theories and models for web-based instructors’ awareness such as interactionist theory, cognitive information processing (CIP) theory, computer-mediated communication (CMC), e-learning interactionalbased model, inquiry models, sensory mind model, and leaning styles model.
Keywords: WeCWI, instructional discovery, technological discovery, pedagogical discovery, theoretical discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22382735 Analysis of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two and three windings using the properties of a bond graph. The modelling and analysis using this methodology to three phase power transformers or transformers with internal incipient faults can be extended.Keywords: Bond graph, electrical transformer, nonlinear saturation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15462734 Investigation of Boll Properties on Cotton Picker Machine Performance
Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari
Abstract:
Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.
Keywords: Cotton, bract, harvester, carpel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7212733 Differential Evolution Based Optimal Choice and Location of Facts Devices in Restructured Power System
Authors: K. Balamurugan, V. Dharmalingam, R. Muralisachithanandam, R. Sankaran
Abstract:
This paper deals with the optimal choice and location of FACTS devices in deregulated power systems using Differential Evolution algorithm. The main objective of this paper is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices such as TCSC and SVC are simulated in this study. Furthermore, their investment costs are also considered. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and location of suitable FACTS devices in deregulated electricity market.
Keywords: FACTS Devices, Deregulated Electricity Market, Optimal Location, Differential Evolution, Mat Lab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19972732 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options
Authors: R.Balamurugan, S.Subramanian
Abstract:
This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022731 Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter
Authors: P. Ruttanee, K-N. Areerak, K-L. Areerak
Abstract:
Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.Keywords: DQ method, Generalized state-space averaging method, Three-phase controlled rectifier, Uncontrolled buck converter, Averaging model, Modeling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38282730 Spread Spectrum Code Estimation by Genetic Algorithm
Authors: V. R. Asghari, M. Ardebilipour
Abstract:
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.Keywords: Code estimation, genetic algorithms, spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15822729 Lighting Consumption Analysis in Retail Industry: Comparative Study
Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera
Abstract:
This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.
Keywords: Lighting consumption, commercial buildings, maintenance, energy performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9852728 Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers
Authors: Mohammad Syuhaimi Ab-Rahman, Mohd Hadi Guna Safnal, Mohd Hazwan Harun, Mohd.Saiful Dzulkefly Zan, Kasmiran Jumari
Abstract:
Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.
Keywords: polymer optical fiber (POF), customer-made, fused-taper-twisted fiber, optical coupler, small world communication, home network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14252727 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812726 Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant
Authors: Frantisek Bozek, Pavel Budinsky, Ignac Hoza, Alexandr Bozek, Magdalena Naplavova
Abstract:
A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxationin the second year of operation was incompliance with the real profit.
Keywords: Bakery, best available technology, cleaner production, costs, economic benefit, efficiency, energy, environmental benefit, investment, savings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21132725 Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators
Authors: R. Osada, S. Ogata, T. Segawa
Abstract:
Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.Keywords: Dielectric barrier discharge plasma actuators, ozone diffusion, PIV measurement, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11992724 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine
Authors: B.R. Singh, O. Singh
Abstract:
Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.
Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17162723 A Note on Potentially Power-Positive Sign Patterns
Authors: Ber-Lin Yu, Ting-Zhu Huang
Abstract:
In this note, some properties of potentially powerpositive sign patterns are established, and all the potentially powerpositive sign patterns of order ≤ 3 are classified completely.
Keywords: Sign pattern, potentially eventually positive sign pattern, potentially power-positive sign pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282722 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.
Keywords: Disturbance automation, electric power grid, smart grid, smart switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10122721 The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary
Authors: Zs. J. Becze, Á. Krivián, M. Sárvári
Abstract:
Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too.
The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.
Keywords: Abiotic factors, drought, nutrition content, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19072720 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322719 Coherent PON for NG-PON2: 40Gbps Downstream Transmission with 40dB Power Margin using Commercial DFB Lasers and no Optical Amplification
Authors: Roberto Gaudino, Antonino Nespola, Dario Zeolla, Stefano Straullu, Vittorio Curri, Gabriella Bosco, Roberto Cigliutti, Stefano Capriata, Paolo Solina.
Abstract:
We demonstrate a 40Gbps downstream PON transmission based on PM-QPSK modulation using commercial DFB lasers without optical amplifier in the ODN, obtaining 40dB power budget. We discuss this solution within NG-PON2 architectures.Keywords: DFB lasers, Optical Coherent Receiver, Passive Optical Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25552718 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations
Authors: A. Safari, H. Shayeghi, H. A. Shayanfar
Abstract:
On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.
Keywords: UPFC, IPSO, output feedback Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14432717 Optimal Compensation of Reactive Power in the Restructured Distribution Network
Authors: Atefeh Pourshafie, Mohsen. Saniei, S. S. Mortazavi, A. Saeedian
Abstract:
In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.Keywords: capacitor placement, deregulated electric market, distribution network optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312716 Hybrid Recovery of Copper and Silver from PV Ribbon and Ag Finger of EOL Solar Panels
Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa
Abstract:
Recovery of pure copper and silver from end-of-life photovoltaic (PV) panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500 °C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from PV ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.
Keywords: Electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4972715 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC
Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.
Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282714 Mitigation of Sag in Real Time
Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole
Abstract:
Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.
Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25912713 Digital Power Management Hardware Realization Using FPGA
Authors: Kar Foo Chong, Andreas Lee Astuti, Pradeep K. Gopalakrishnan, T. Hui Teo
Abstract:
This paper describes design of a digital feedback loop for a low switching frequency dc-dc switching converters. Low switching frequencies were selected in this design. A look up table for the digital PID (proportional integrator differentiator) compensator was implemented using Altera Stratix II with built-in ADC (analog-to-digital converter) to achieve this hardware realization. Design guidelines are given for the PID compensator, high frequency DPWM (digital pulse width modulator) and moving average filter.Keywords: dc-dc converter, FPGA, PID, power management, .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20052712 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16072711 Probabilistic Method of Wind Generation Placement for Congestion Management
Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli
Abstract:
Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962710 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability
Authors: Gayadhar Panda, P. K. Rautraya
Abstract:
In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.
Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20452709 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters
Authors: Young-Tae Lee, Hee-Chang Lim
Abstract:
This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986