Search results for: Approximation algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3739

Search results for: Approximation algorithm

2149 A Hybrid Ontology Based Approach for Ranking Documents

Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard

Abstract:

Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.

Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2148 A New Heuristic Statistical Methodology for Optimizing Queuing Networks Using Discreet Event Simulation

Authors: Mohamad Mahdavi

Abstract:

Most of the real queuing systems include special properties and constraints, which can not be analyzed directly by using the results of solved classical queuing models. Lack of Markov chains features, unexponential patterns and service constraints, are the mentioned conditions. This paper represents an applied general algorithm for analysis and optimizing the queuing systems. The algorithm stages are described through a real case study. It is consisted of an almost completed non-Markov system with limited number of customers and capacities as well as lots of common exception of real queuing networks. Simulation is used for optimizing this system. So introduced stages over the following article include primary modeling, determining queuing system kinds, index defining, statistical analysis and goodness of fit test, validation of model and optimizing methods of system with simulation.

Keywords: Estimation, queuing system, simulation model, probability distribution, non-Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2147 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghasemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) for optimizing numerical test functions is presented. In MLABC, two species are used. The first species employs n colonies where each of them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information. The proposed algorithm is tested on a set of well-known test functions. The results show that MLABC algorithm provides efficiency and robustness to solve numerical functions.

Keywords: Artificial bee colony, cooperative artificial bee colony, multilevel cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
2146 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
2145 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2144 Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te

Authors: N. Dahbi, M. Daoudi, A.Belghachi

Abstract:

The present work deals with the calculation of transport properties of Hg0.8Cd0.2Te (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 1015 cm-3, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.

Keywords: degeneracy case, Hg0.8Cd0.2Te semiconductor, Monte Carlo simulation, transport parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2143 Robot Vision Application based on Complex 3D Pose Computation

Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr

Abstract:

The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.

Keywords: features correspondence, registration algorithm, robot vision, triangulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
2142 Performance Evaluation of Wavelet Based Coders on Brain MRI Volumetric Medical Datasets for Storage and Wireless Transmission

Authors: D. Dhouib, A. Naït-Ali, C. Olivier, M. S. Naceur

Abstract:

In this paper, we evaluate the performance of some wavelet based coding algorithms such as 3D QT-L, 3D SPIHT and JPEG2K. In the first step we achieve an objective comparison between three coders, namely 3D SPIHT, 3D QT-L and JPEG2K. For this purpose, eight MRI head scan test sets of 256 x 256x124 voxels have been used. Results show superior performance of 3D SPIHT algorithm, whereas 3D QT-L outperforms JPEG2K. The second step consists of evaluating the robustness of 3D SPIHT and JPEG2K coding algorithm over wireless transmission. Compressed dataset images are then transmitted over AWGN wireless channel or over Rayleigh wireless channel. Results show the superiority of JPEG2K over these two models. In fact, it has been deduced that JPEG2K is more robust regarding coding errors. Thus we may conclude the necessity of using corrector codes in order to protect the transmitted medical information.

Keywords: Image coding, medical imaging, wavelet basedcoder, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2141 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual

Abstract:

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
2140 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
2139 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function

Authors: Bita Tadayon, Nasser Salmasi

Abstract:

This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.

Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
2138 Effectiveness of Earthing System in Vertical Configurations

Authors: S. Yunus, A. Suratman, N. Mohamad Nor, M. Othman

Abstract:

This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.

Keywords: Earthing systems, earth electrodes, Finite Element Method, FEM, Genetic Algorithm, GA, earth resistances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
2137 Predicting Protein Interaction Sites Based on a New Integrated Radial Basis Functional Neural Network

Authors: Xiaoli Shen, Yuehui Chen

Abstract:

Interactions among proteins are the basis of various life events. So, it is important to recognize and research protein interaction sites. A control set that contains 149 protein molecules were used here. Then 10 features were extracted and 4 sample sets that contained 9 sliding windows were made according to features. These 4 sample sets were calculated by Radial Basis Functional neutral networks which were optimized by Particle Swarm Optimization respectively. Then 4 groups of results were obtained. Finally, these 4 groups of results were integrated by decision fusion (DF) and Genetic Algorithm based Selected Ensemble (GASEN). A better accuracy was got by DF and GASEN. So, the integrated methods were proved to be effective.

Keywords: protein interaction sites, features, sliding windows, radial basis functional neutral networks, genetic algorithm basedselected ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
2136 Performance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm

Authors: N. P. Waweru, D. B. O. Konditi, P. K. Langat

Abstract:

Direction of Arrival estimation refers to defining a mathematical function called a pseudospectrum that gives an indication of the angle a signal is impinging on the antenna array. This estimation is an efficient method of improving the quality of service in a communication system by focusing the reception and transmission only in the estimated direction thereby increasing fidelity with a provision to suppress interferers. This improvement is largely dependent on the performance of the algorithm employed in the estimation. Many DOA algorithms exists amongst which are MUSIC, Root-MUSIC and ESPRIT. In this paper, performance of these three algorithms is analyzed in terms of complexity, accuracy as assessed and characterized by the CRLB and memory requirements in various environments and array sizes. It is found that the three algorithms are high resolution and dependent on the operating environment and the array size. 

Keywords: Direction of Arrival, Autocorrelation matrix, Eigenvalue decomposition, MUSIC, ESPRIT, CRLB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8779
2135 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
2134 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
2133 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
2132 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames

Authors: M. Mohebbi, K. Shakeri

Abstract:

The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.

Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2131 Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Authors: Chien-Sheng Chen, Szu-Lin Su, Chuan-Der Lu

Abstract:

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

Keywords: Time of arrival (TOA), angle of arrival (AOA), non-line-of-sight (NLOS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
2130 Smartphone Video Source Identification Based on Sensor Pattern Noise

Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.

Keywords: Digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
2129 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol

Abstract:

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
2128 ORank: An Ontology Based System for Ranking Documents

Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee

Abstract:

Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.

Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
2127 FPGA based Relative Distance Measurement using Stereo Vision Technology

Authors: Manasi Pathade, Prachi Kadam, Renuka Kulkarni, Tejas Teredesai

Abstract:

In this paper, we propose a novel concept of relative distance measurement using Stereo Vision Technology and discuss its implementation on a FPGA based real-time image processor. We capture two images using two CCD cameras and compare them. Disparity is calculated for each pixel using a real time dense disparity calculation algorithm. This algorithm is based on the concept of indexed histogram for matching. Disparity being inversely proportional to distance (Proved Later), we can thus get the relative distances of objects in front of the camera. The output is displayed on a TV screen in the form of a depth image (optionally using pseudo colors). This system works in real time on a full PAL frame rate (720 x 576 active pixels @ 25 fps).

Keywords: Stereo Vision, Relative Distance Measurement, Indexed Histogram, Real time FPGA Image Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
2126 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.

Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
2125 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
2124 Hybrid Artificial Immune System for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2123 STM Spectroscopy of Alloyed Nanocrystal Composite CdSxSe1-X

Authors: T. Abdallah, K. Easawi, A. Khalid, S. Negm, H. Talaat

Abstract:

Nanocrystals (NC) alloyed composite CdSxSe1-x(x=0 to 1) have been prepared using the chemical solution deposition technique. The energy band gap of these alloyed nanocrystals of approximately the same size, have been determined by scanning tunneling spectroscopy (STS) technique at room temperature. The values of the energy band gap obtained directly using STS are compared to those measured by optical spectroscopy. Increasing the molar fraction ratio x from 0 to 1 causes clearly observed increase in the band gap of the alloyed composite nanocrystal. Vegard-s law was applied to calculate the parameters of the effective mass approximation (EMA) model and the dimension obtained were compared to the values measured by STM. The good agreement of the calculated and measured values is a direct result of applying Vegard's law in the nanocomposites.

Keywords: Alloy semiconductor nanocrystals, STM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2122 Using Artificial Neural Network Algorithm for Voltage Stability Improvement

Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi

Abstract:

This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.

Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
2121 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm

Authors: Bilal Alatas, Ahmet Arslan

Abstract:

The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.

Keywords: Classification rule mining, data mining, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2120 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique

Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram

Abstract:

Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.

Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019