STM Spectroscopy of Alloyed Nanocrystal Composite CdSxSe1-X
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33150
STM Spectroscopy of Alloyed Nanocrystal Composite CdSxSe1-X

Authors: T. Abdallah, K. Easawi, A. Khalid, S. Negm, H. Talaat

Abstract:

Nanocrystals (NC) alloyed composite CdSxSe1-x(x=0 to 1) have been prepared using the chemical solution deposition technique. The energy band gap of these alloyed nanocrystals of approximately the same size, have been determined by scanning tunneling spectroscopy (STS) technique at room temperature. The values of the energy band gap obtained directly using STS are compared to those measured by optical spectroscopy. Increasing the molar fraction ratio x from 0 to 1 causes clearly observed increase in the band gap of the alloyed composite nanocrystal. Vegard-s law was applied to calculate the parameters of the effective mass approximation (EMA) model and the dimension obtained were compared to the values measured by STM. The good agreement of the calculated and measured values is a direct result of applying Vegard's law in the nanocomposites.

Keywords: Alloy semiconductor nanocrystals, STM.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061523

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472

References:


[1] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281(1998) 2013.
[2] W.C.W. Chan, S.M. Nie, Science 281 (1998) 2016.
[3] Y. Yin, A.P. Alivisatos, Nature 437 (2005) 664.
[4] E.A. Weiss, R.C. Chiechi, S.M. Geyer, V.J. Porter, D.C. Bell, M.G. Bawendi, G.M. Whitesides, J.Am. Chem. Soc. 130 (2008) 74.
[5] Q. Zhao, P.A. Graf, W.B. Jones, A. Franceschetti, J. Li, L.W. Wang, K. Kim, Nano Lett. 7 (2007) 3274.
[6] V.I. Klimov, Annu. Rev. Phys. Chem. 58 (2007) 635.
[7] S.C. Erwin, L.J. Zu, M.I. Hafter, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436 (2005) 91.
[8] X. Chen, J. Hutchison, P.J. Dobson, G. Wakefield, J. Mater. Sci. 44 (2009) 285.
[9] Y. Wang, Z.Y. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, J. Phys. Chem. B 108 (2004) 15461.
[10] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett.1 (2001) 207.
[11] R.E. Bailey, S.M. Nie, J. Am. Chem. Soc. 125 (2003) 7100.
[12] E. Jang, S. Jun, L. Pu, Chem. Commun.24 (2003) 2964.
[13] X.H. Zhong, M.Y. Han, Z.L. Dong, T.J. White, W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589.
[14] X.H. Zhong, Y.Y. Feng, W. Knoll, M.Y. Han, J. Am. Chem. Soc. 125 (2003) 13559.
[15] Z.B. Pi, L.Y. Wang, X.K. Tian, C. Yang, J.H. Zheng, Mater. Lett. 61 (2007) 4857.
[16] L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport,T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc. 128 (2006) 12299.
[17] Y. Wang, Y.B. Hou, A. Tang, B. Feng, Y. Li, J. Liu, F. Teng, J. Cryst. Growth 308 (2007) 19.
[18] Y.G. Zheng, Z.C. Yang, J.Y. Ying, Adv. Mater. 19 (2007) 1475.
[19] Erik P.A.M. Bakkers, Daniel Vanmaekelbergh, Phys. Rev. B 62 (2000) R7743.
[20] Al L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30 (2000) 475.
[21] L.V. Keldysh, JETP Lett. 29 (1979) 658; D.S. Chemla, D.A.B. Miller, Opt.Lett. 11 (1986) 522.
[22] E.A. Muljarov et al., Phys. Rev. B 62 (2000) 7420.
[23] Vegard, L. Z. Phys. 5, (1921), 17.
[24] Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. J. Am. Chem. Soc. 128, (2006), 12299.
[25] D.V. Talapin, A.L. Rogach, A. Kornowski et al., Nano Lett. 1, 207 (2001).