Search results for: Decision science
445 Algorithm for Reconstructing 3D-Binary Matrix with Periodicity Constraints from Two Projections
Authors: V. Masilamani, Kamala Krithivasan
Abstract:
We study the problem of reconstructing a three dimensional binary matrices whose interiors are only accessible through few projections. Such question is prominently motivated by the demand in material science for developing tool for reconstruction of crystalline structures from their images obtained by high-resolution transmission electron microscopy. Various approaches have been suggested to reconstruct 3D-object (crystalline structure) by reconstructing slice of the 3D-object. To handle the ill-posedness of the problem, a priori information such as convexity, connectivity and periodicity are used to limit the number of possible solutions. Formally, 3Dobject (crystalline structure) having a priory information is modeled by a class of 3D-binary matrices satisfying a priori information. We consider 3D-binary matrices with periodicity constraints, and we propose a polynomial time algorithm to reconstruct 3D-binary matrices with periodicity constraints from two orthogonal projections.
Keywords: 3D-Binary Matrix Reconstruction, Computed Tomography, Discrete Tomography, Integral Max Flow Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4893444 Managing the Architectural Heritage of Tripoli, Libya: Case Study of the Red Castle
Authors: Eman Mohamed Ali Elalwani, Salah Haj Ismail
Abstract:
The Libyan heritage buildings are currently facing a number of crises that pose a threat to their structural integrity, functionality, and overall performance. One of the challenges pertains to the loss of community identity, which has arisen due to the lack of awareness and unconscious behavior of the residents. An additional issue arises from inadequate site management practices, including the implementation of modern techniques and innovative building materials that are incompatible with structural elements, resulting in the deformation of certain sections of the buildings. The security concerns of the city, along with the ongoing civil conflict, fostered a conducive environment for violations, resulting in the vandalism of certain monuments in the city. However, the degradation of this valuable heritage is mainly attributed to the city's neglect and pollution. The elevated groundwater level resulting from pollution has led to erosion in the building's foundations. Mitigating these negative consequences through strategic interventions and rehabilitation is required to preserve this treasure. In order to assist the local community in recovering from those crises, this paper stated a viable strategy for promoting preservation efforts that aimed at safeguarding the heritage sites while also providing guidance to decision-makers and the local community on how to avoid these crises, preserve, enhance, and recognize the significance of the Libyan heritage.
Keywords: Cultural heritage, historical buildings, Tripoli’s Old City, Red Castle, crises, preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31443 Smart Grid Simulator
Authors: Andrei Ursachi, Dorin Bordeasu
Abstract:
The Smart Grid Simulator is a computer software based on advance algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy factures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that supports the discussion and implementation of the system.
Keywords: Applied Science, Renewable energy sources, Smart Grid, Sustainable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109442 Fe, Pb, Mn, and Cd Concentrations in Edible Mushrooms (Agaricus campestris) Grown in Abakaliki, Ebonyi State, Nigeria
Authors: N. O. Omaka, I. F. Offor, R.C. Ehiri
Abstract:
The health and environmental risk of eating mushrooms grown in Abakaliki were evaluated in terms of heavy metals accumulation. Mushroom samples were collected from four different farms located at Izzi, Amajim, Amana and Amudo and analyzed for (iron, lead, manganese and cadmium) using Bulk Scientific Atomic Absorption Spectrophotometer 205. Results indicates mean range of concentrations of the trace metals in the mushrooms were Fe (0.22-152. 03), Mn (0.74-9.76), Pb (0.01.0.80), Cd (0.61-0.82) mg/L respectively. Accumulation of Cd on the four locations under investigation was higher than the UK Government Food Science Surveillance and World Health Organization maximum recommended levels in mushroom for human consumption. The Fe and Mn contaminants of Amudo were significant and show the impact of anthropogenic/atmospheric pollution. The potential sources of the heavy metals in the mushrooms were from urban waste, dust from mining and quarrying activities, natural geochemistry of the area, and use of inorganic fertilizers
Keywords: Agaricus campestris, edible, health implication heavy metal, mushroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564441 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach
Authors: Ching-Feng Chen, Shih-Kai Chen
Abstract:
The Floating Photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO2) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.
Keywords: Carbon Border Adjustment Mechanism, Floating Photovoltaic, Emissions Trading Systems, Net Present Value, NPV, Internal Rate of Return, IRR, Benefit-Cost Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152440 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.
Keywords: Data management, digitization, Industry 4.0, knowledge engineering, metamodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458439 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.
Keywords: Demand management, international experiences, traffic congestion pricing, public acceptance, public objection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651438 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique
Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru
Abstract:
The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868437 Processing the Medical Sensors Signals Using Fuzzy Inference System
Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi
Abstract:
Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967436 “Magnetic Cleansing” for the Provision of a ‘Quick Clean’ to Oiled Wildlife
Authors: Lawrence N. Ngeh, John D. Orbell, Stephen W. Bigger, Kasup Munaweera, Peter Dann
Abstract:
This research is part of a broad program aimed at advancing the science and technology involved in the rescue and rehabilitation of oiled wildlife. One aspect of this research involves the use of oil-sequestering magnetic particles for the removal of contaminants from plumage – so-called “magnetic cleansing". This treatment offers a number of advantages over conventional detergent-based methods including portability - which offers the possibility of providing a “quick clean" to the animal upon first encounter in the field. This could be particularly advantageous when the contaminant is toxic and/or corrosive and/or where there is a delay in transporting the victim to a treatment centre. The method could also be useful as part of a stabilization protocol when large numbers of affected animals are awaiting treatment. This presentation describes the design, development and testing of a prototype field kit for providing a “quick clean" to contaminated wildlife in the field.Keywords: Magnetic Particles, Oiled Wildlife, Quick Clean, Wildlife Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854435 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313434 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior
Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai
Abstract:
Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401433 E-Commerce Adoption and Implementation in Automobile Industry: A Case Study
Authors: Amitrajit Sarkar
Abstract:
The use of Electronic Commerce (EC) technologies enables Small Medium Enterprises (SMEs) to improve their efficiency and competitive position. Much of the literature proposes an extensive set of benefits for organizations that choose to adopt and implement ECommerce systems. Factors of Business –to-business (B2B) E-Commerce adoption and implementation have been extensively investigated. Despite enormous attention given to encourage Small Medium Enterprises (SMEs) to adopt and implement E-Commerce, little research has been carried out in identifying the factors of Business-to-Consumer ECommerce adoption and implementation for SMEs. To conduct the study, Tornatsky and Fleischer model was adopted and tested in four SMEs located in Christchurch, New Zealand. This paper explores the factors that impact the decision and method of adoption and implementation of ECommerce systems in automobile industry. Automobile industry was chosen because the product they deal with i.e. cars are not a common commodity to be sold online, despite this fact the eCommerce penetration in automobile industry is high. The factors that promote adoption and implementation of E-Commerce technologies are discussed, together with the barriers. This study will help SME owners to effectively handle the adoption and implementation process and will also improve the chance of successful E-Commerce implementation. The implications of the findings for managers, consultants, and government organizations engaged in promoting E-Commerce adoption and implementation in small businesses and future research are discussed.Keywords: E-Commerce in SMEs, E-Commerce in automobile industry, B2C E-Commerce, E-Commerce adoption and Implementation, E-Commerce Website Implementation, E-Commerce Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4794432 Formation of Civic Identity in the Process of Globalization: The Example of the U.S.A. and Kazakhstan
Authors: Elnura Assyltayeva, Zhanar Aldubasheva, Zhengisbek Tolen
Abstract:
An attempt has been made several times to identify and discuss the U.S. experience on the formation of political nation in political science. The purpose of this research paper is to identify the main aspects of the formation of civic identity in the United States and Kazakhstan, through the identification of similarities and differences that can get practical application in making decisions of national policy issues in the context of globalization, as well as to answer the questions “What should unite the citizens of Kazakhstan to the nation?" and “What should be the dominant identity: civil or ethnic (national) one?" Can Kazakhstan being multiethnic country like America, adopt its experience in the formation of a civic nation? Since it is believed that the “multi-ethnic state of the population is a characteristic feature of most modern countries in the world," it states that “inter-ethnic integration is one of the most important aspects of the problem of forming a new social community (metaetnic - Kazakh people, Kazakh nation" [1].Keywords: nation, civic identity, nation building, globalization, interethnic relations, patriotism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236431 Influence of Transformation Leadership Style on Employee Engagement among Generation Y
Authors: Z. D. Mansor, C. P. Mun, B. S. Nurul Farhana, Wan Aisyah Nasuha Wan Mohamed Tarmizi
Abstract:
The aim of this research is to determine the influence of transformation leadership style on employee engagement among Generation Y. The growing of Generation Y employees in Malaysia has raised concerns about how to engage and motivate this cohort. Transformation Leadership style is one of the key factors to increase employee engagement levels in the organization. This study has proven to be important for the researchers and the organization to properly understand the concept of employee engagement, transformation leadership style and their relationship. The samples in this study included 221 respondents of Generation Y who are currently working in Selangor and Klang Valley area in Malaysia. The data were collected using questionnaires and analyzed by using Statistical Package for Social Science (SPSS). The results show that there is a significant relationship between the dimension of intellectual stimulation, inspiration motivation and individual consideration on employee engagement. In contrast, the results have revealed that there is no significant relationship between idealized influences of a leader on employee engagement among Generation Y.Keywords: Employee engagement, gen Y, transformational leadership styles, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895430 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567429 Optimizing usage of ICTs and Outsourcing Strategic in Business Models and Customer Satisfaction
Authors: Saeed Rahmani Bagha, Mohammad Mirzahosseinian, Sonatkhatoon Kashanimotlagh
Abstract:
Nowadays, under developed countries for progress in science and technology and decreasing the technologic gap with developed countries, increasing the capacities and technology transfer from developed countries. To remain competitive, industry is continually searching for new methods to evolve their products. Business model is one of the latest buzzwords in the Internet and electronic business world. To be successful, organizations must look into the needs and wants of their customers. This research attempts to identify a specific feature of the company with a strong competitive advantage by analyzing the cause of Customer satisfaction. Due to the rapid development of knowledge and information technology, business environments have become much more complicated. Information technology can help a firm aiming to gain a competitive advantage. This study explores the role and effect of Information Communication Technology in Business Models and Customer satisfaction on firms and also relationships between ICTs and Outsourcing strategic.Keywords: Information Communication Technology, Outsourcing, Customer Satisfaction, Business Plan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695428 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856427 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647426 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model
Authors: Mat Isa, C. M., Mohd Saman, H., Mohd Nasir, S. R., Jaapar, A.
Abstract:
International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.
Keywords: Factors, early movers, entry timing choices, late movers, Logistic Regression Model, Principal Axis Factorial Analysis, Malaysian construction firms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232425 The Capabilities Approach as a Future Alternative to Neoliberal Higher Education in the MENA Region
Authors: Ranya Elkhayat
Abstract:
This paper aims at offering a futures study for higher education in the Middle East. Paying special attention to the negative impacts of neoliberalism, the paper will demonstrate how higher education is now commodified, corporatized and how arts and humanities are eschewed in favor of science and technology. This conceptual paper argues against the neoliberal agenda and aims at providing an alternative exemplified in the Capabilities Approach with special reference to Martha Nussbaum’s theory. The paper is divided into four main parts: the current state of higher education under neoliberal values, a prediction of the conditions of higher education in the near future, the future of higher education using the theoretical framework of the Capabilities Approach, and finally, some areas of concern regarding the approach. The implications of the study demonstrate that Nussbaum’s Capabilities Approach will ensure that the values of education are preserved while avoiding the pitfalls of neoliberalism.
Keywords: Capabilities approach, education future, higher education, MENA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671424 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898423 DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach
Authors: Zuwairie Ibrahim, Yusei Tsuboi, Osamu Ono, Marzuki Khalid
Abstract:
Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.Keywords: DNA computing, operation research, 1-center problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462422 Fighting COVID-19: Lessons and Experience from the World’s Largest Economies
Authors: Xiaowen Zhang, Wanda Luen-Wun Siu
Abstract:
The paper reviews the insights gained in combating COVID-19 in the US, Japan, and China. After evaluation and investigation, we found that China’s and Japan’s experience of fighting COVID-19 is commendable. The Chinese government and the Japanese administration have implemented highly effective governance and public health course of action to fight COVID-19. Government-led epidemic control with a staunch belief in science can roll out effective pandemic control strategies. In contrast, the US failed to react to COVID-19 effectively. The relaxed public health measures of ending shutdowns prematurely were not working. When the US keeps business open after the spring shutdown, COVID-19 cases are soaring. Such experiences inform us effective governance and a mandatory and stricter approach can better curb a pandemic than milder measures in handling a public health emergency. And China and Japan, where collectivistic culture reins, can better maneuver a public health crisis with collective efforts.
Keywords: COVID-19, China, Japan, US.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435421 Optimal Sliding Mode Controller for Knee Flexion During Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.
Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181420 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022419 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.
Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67418 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study
Authors: M. Kosacka, I. Kudelska
Abstract:
Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.Keywords: Dismantling, end of life vehicle, sustainability, storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366417 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320416 Optimum Replacement Policies for Kuwait Passenger Transport Company Busses: Case Study
Authors: Hilal A. Abdelwali, Elsayed E.M. Ellaimony, Ahmad E.M. Murad, Jasem M.S. Al-Rajhi
Abstract:
Due to the excess of a vehicle operation through its life, some elements may face failure and deteriorate with time. This leads us to carry out maintenance, repair, tune up or full overhaul. After a certain period, the vehicle elements deteriorations increase with time which causes a very high increase of doing the maintenance operations and their costs. However, the logic decision at this point is to replace the current vehicle by a new one with minimum failure and maximum income. The importance of studying vehicle replacement problems come from the increase of stopping days due to many deteriorations in the vehicle parts. These deteriorations increase year after year causing an increase of operating costs and decrease the vehicle income. Vehicle replacement aims to determine the optimum time to keep, maintain, overhaul, renew and replace vehicles. This leads to an improvement in vehicle income, total operating costs, maintenance cost, fuel and oil costs, ton-kilometers, vehicle and engine performance, vehicle noise, vibration, and pollution. The aim of this paper is to find the optimum replacement policies of Kuwait Passenger Transport Company (KPTCP) fleet of busses. The objective of these policies is to maximize the busses pure profits. The dynamic programming (D.P.) technique is used to generate the busses optimal replacement policies
Keywords: Replacement Problem, Automotive Replacement, Dynamic Programming, Equipment Replacement, K.P.T.C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530