Search results for: time – varying feed back
7538 Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air
Authors: Moghadazadeh Zahra, Towfighi Jafar, Mofarahi Masoud
Abstract:
This article is presented an experimental and modeling study of a four-bed pressure swing adsorption process using zeolite13X to provide oxygen-enriched air. The binary mixture N2/O2 (79/21 vol %) was used as a feed stream. The effects of purge/feed ratio (P/F), adsorption pressure, cyclic time and product flow rate on product purity and recovery under nonisothermal condition were studied. The adsorption dynamics of process were determined using a mathematical model incorporated mass and energy balances. A Mathlab code using finite difference method was developed to solve the set of coupled differential-algebraic equations, and the simulation results are agreed well with experimental results.Keywords: Pressure swing adsorption (PSA), Oxygen, Zeolite 13X.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38667537 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique
Authors: Navajyoti Panda, R. S. Pawar
Abstract:
In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.
Keywords: Bending, V-bending, FEM, spring-back, Taguchi, HyperForm, profile projector, HSLA 420 & St12 materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14507536 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22627535 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach
Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh
Abstract:
This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.Keywords: Modeling, Neural Networks, Phenol, Soil media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21457534 Using Reverse Osmosis Membrane for Chromium Removal from Aqueous Solution
Authors: S. A. Mousavi Rad, S. A. Mirbagheri, T. Mohammadi
Abstract:
In this paper, removal of chromium(VI) from aqueous solution has been researched using reverse osmosis. The influence of transmembrane pressure and feed concentration on permeate flux, water recovery, permeate concentration, and salt rejection was studied. The results showed that according to the variation of transmembrane pressure and feed concentration, the permeate flux and salt rejection were in the range 19.17 to 58.75 l/m2.min and 99.51 to 99.8 %, respectively. The highest permeate flux, 58.75 l/m2.min, and water recovery, 42.47 %, were obtained in the highest pressure and the lowest feed concentration. On the other hand, the lowest permeate concentration, 0.01 mg/l, and the highest salt rejection, 99.8 %, were obtained in the highest pressure and the lowest feed concentration.Keywords: solution, Chromium, Removal, Reverse osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26047533 Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications
Authors: Abdelheq Boukarkar, Omar Guermoua
Abstract:
In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm3, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range.
Keywords: Miniaturized antennas, patch antennas, stable gain, wideband antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5347532 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25747531 Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw
Authors: Mengjun Zhang, Yuli Sun, Dunwen Zuo, Chunxiang Xie, Chunming Zhang
Abstract:
Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance.
Keywords: Fixed abrasive, diamond wire saw, slicing, sapphire, orthogonal experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31557530 Improved Fuzzy Neural Modeling for Underwater Vehicles
Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray
Abstract:
The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21537529 Illicit Return Practices of Irregular Migrants from Greece to Turkey
Authors: Enkelejda Koka, Denard Veshi
Abstract:
Since 2011, in the name of ‘humanitarianism’ and deaths in the Mediterranean Sea, the legal and political justification delivered by Greece to manage the refugee crisis is pre-emptive interception. Although part of the EU, Greece adopted its own strategy. These practices have also created high risks for migrants generally resulting in non-rescue episodes and push-back practices having lethal consequences to the life of the irregular migrant. Thus, this article provides an analysis of the Greek ‘compassionate border work’ policy, a practice known as push-back. It is argued that these push-back practices violate international obligations, notably the ‘right to life’, the ‘duty to search and rescue’, the prohibition of inhuman or degrading treatment or punishment and the principle of non-refoulement.
Keywords: Greece, migrants, push-back policy, violation of international law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10467528 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater
Authors: Bhausaheb L. Pangarkar, M.G. Sane
Abstract:
Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.Keywords: MD, ground water, seawater, AGMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24697527 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).
Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9287526 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33017525 High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor
Authors: Subrata Hait, Debabrata Mazumder
Abstract:
A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.Keywords: Activated sludge process, shaft-type reactor, highrate treatment, carbonaceous wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36557524 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error
Authors: Insung Jung, lockjo Koo, Gi-Nam Wang
Abstract:
The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.
Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19827523 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
Authors: Petia Georgieva, Sebastião Feyo de Azevedo
Abstract:
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.
Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18757522 Utilization Juice Wastes as Corn Replacement in the Broiler Diet
Authors: Yose Rizal, Maria Endo Mahata, Mira Andriani, Guoyao Wu
Abstract:
An experiment was conducted with 80 unsexed broilers of the Arbor Acress strain to determine the capability of a carrot and fruit juice wastes mixture (carrot, apple, manggo, avocado, orange, melon and Dutch egg plant) in the same proportion for replacing corn in broiler diet. This study involved a completely randomized design (CRD) with 5 treatments (0, 5, 10, 15, and 20% of juice wastes mixture in diets) and 4 replicates per treatment. Diets were isonitrogenous (22% crude protein) and isocaloric (3000 kcal/kg diet). Measured variables were feed consumption, average daily gain, feed conversion, as well as percentages of abdominal fat pad, carcass, digestive organs (liver, pancreas and gizzard), and heart. Data were analyzed by analysis of variance for CRD. Increasing juice wastes mixture levels in diets increased feed consumption (P<0.05) and average daily gain (P<0.01), while improving feed utilization efficiency (P<0.05). These treatments also affected (P<0.05) abdominal fat pad percentage but had no effect (P>0.05) on carcass, liver, pancreas, gizzard or heart percentages. In conclusion, up to 20% of juice wastes mixture could be included for the broiler diet to effectively replace up to 40% corn in the diet.Keywords: average daily gain, feed consumption, feedconversion, juice waste mixture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18137521 Analysis of Combined Use of NN and MFCC for Speech Recognition
Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam
Abstract:
The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.
Keywords: Speech Recognition, MFCC, Neural Network, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32687520 Volatility Switching between Two Regimes
Authors: Josip Visković, Josip Arnerić, Ante Rozga
Abstract:
Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behavior of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.
Keywords: Central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25217519 Pain and Lumbar Muscle Activation before and after Functional Task in Nonspecific Chronic Low Back Pain
Authors: Lídia E. O. Cruz, Adriano P. C. Calvo, Renato J. Soares, Regiane A. Carvalho
Abstract:
Individuals with non-specific chronic low back pain may present altered movement patterns during functional activities. However, muscle behavior before and after performing a functional task with different load conditions is not yet fully understood. The aim of this study is to analyze lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground (with and without load) in individuals with nonspecific chronic low back pain. 20 subjects with nonspecific chronic low back pain and 20 healthy subjects participated in this study. A surface electromyography was performed in the ilio-costal, longissimus and multifidus muscles to evaluate lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground, with and without load. The symptomatic participants had greater lumbar muscle activation compared to the asymptomatic group, more evident in performing the task without load, with statistically significant difference (p = 0,033) between groups for the right multifidus muscle. This study showed that individuals with nonspecific chronic low back pain have higher muscle activation before and after performing a functional task compared to healthy participants.
Keywords: Chronic low back pain, functional task, lumbar muscles, muscle activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5307518 Comparative Study of Pasting Properties of High Fibre Plantain Based Flour Intended for Diabetic Food (Fufu)
Authors: C. C. Okafor, E. E. Ugwu
Abstract:
A comparative study on the feasibility of producing instant high fibre plantain flour for diabetic fufu by blending soy residence with different plantain (Musa spp) varieties (Horn, false Horn and French), all sieved at 60 mesh, mixed in ratio of 60:40 was analyzed for their passing properties using standard analytical method. Results show that VIIIS60 had the highest peak viscosity (303.75 RVU), Trough value (182.08 RVU), final viscosity (284.50 RVU), and lowest in breakdown viscosity (79.58 RVU), set back value (88.17 RVU), peak time (4.36min), pasting temperature (81.18°C) and differed significantly (p <0.05) from other samples. VIS60 had the lowest in peak viscosity (192.25 RVU), Trough value (112.67 RVU), final viscosity (211.92 RVU), but highest in breakdown viscosity (121.61 RVU), peak time (4.66min) pasting temperature (82.35°C), and differed significantly (p <0.05), from other samples. VIIS60 had the medium peak viscosity (236.67 RVU), Trough value (116.58 RVU), Break down viscosity (120:08 RVU), set back viscosity (167.92 RVU), peak time (4.39min), pasting temp (81.44°C) and differed significantly (p <0.05) from other samples. High final viscosity and low set back values of the French variety with soy residue blended at 60 mesh particle size recommends this french variety and fibre composition as optimum for production of instant plantain soy residue flour blend for production of diabetic fufu.
Keywords: Plantain, soy residue pasting properties particle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23727517 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31157516 Mathematical Modeling of Surface Roughness in Surface Grinding Operation
Authors: M.A. Kamely, S.M. Kamil, C.W. Chong
Abstract:
A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.Keywords: Mathematical Modeling, Response surfacemethodology, Surface roughness, Cylindrical Grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32537515 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)
Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat
Abstract:
An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.
Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15047514 Egg Production Performance of Old Laying Hen Fed Dietary Turmeric Powder
Authors: D. P. Rahardja, M. Rahman Hakim, V. Sri Lestari
Abstract:
An experiment was conducted to elucidate the effects of turmeric powder supplementation on egg production performance of old laying hens (80 weeks of age). There were 40 hens of Hysex Brown strain used in the study. They were caged individually, and randomly divided into 4 treatment groups of diet containing 0 (control), 1, 2 and 4 % oven dried turmeric powder for 3 periods of 4 weeks; Egg production (% hen day) and feed intake of the 4 treatment groups at the commencement of the experiment were not significantly different. In addition to egg production performance (% and egg weight), feed and water intakes were measured daily, and cholesterol content of the whole egg was determined. The results indicated that feed intakes of the hen were significantly lowered when 4% turmeric powder supplemented, while there were no significant changes in water intakes. Egg production were significantly increased and maintained at a higher level by turmeric powder supplementation up to 4% compared with the control, while the weight of eggs were not significantly affected. The research markedly demonstrated that supplementation of turmeric powder up to 4% could improve and maintain egg production performance of the old laying hen at a higher level with a lower cholesterol content.
Keywords: Curcumin, feed and water intake, old laying hen, egg production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35267513 The Study of the Variability of Anticipatory Postural Adjustments in Recurrent Non-specific LBP Patients
Authors: Rosita Hedayati , Sedighe Kahrizi , Mohammad Parnianpour , Fariba Bahrami , Anoshirvan Kazemnejad
Abstract:
The study of the variability of the postural strategies in low back pain patients, as a criterion in evaluation of the adaptability of this system to the environmental demands is the purpose of this study. A cross-sectional case-control study was performed on 21 recurrent non-specific low back pain patients and 21 healthy volunteers. The electromyography activity of Deltoid, External Oblique (EO), Transverse Abdominis/Internal Oblique (TrA/IO) and Erector Spine (ES) muscles of each person was recorded in 75 rapid arm flexion with maximum acceleration. Standard deviation of trunk muscles onset relative to deltoid muscle onset were statistically analyzed by MANOVA . The results show that chronic low back pain patients exhibit less variability in their anticipatory postural adjustments (APAs) in comparison with the control group. There is a decrease in variability of postural control system of recurrent non-specific low back pain patients that can result in the persistence of pain and chronicity by decreasing the adaptability to environmental demands.Keywords: EMG Onset Latency, Variability, Posture, Non - specific Low Back Pain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19997512 Back Analysis of Tehran Metro Tunnel Construction Using FLAC-3D
Authors: M. Mahdi, N. Shariatmadari
Abstract:
An important aspect of planning for shallow tunneling under urban areas is the determination of likely surface movements and interaction with existing structures. Back analysis of built tunnels that their settlements magnitude is available, could aid the designers to have a more accuracy in future projects.
In this paper, one single Tehran Metro Tunnel (at west of Hor square, Jang University Street) was selected. At first, surface settlements of this tunnel were measured in situ. Then this tunnel was modeled using the commercial finite deference software FLAC-3D. Finally, Results of modeling and in situ measurements compared for verification.
Keywords: Shallow Tunnel, Back Analysis, Surface Movement, Numerical Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38187511 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant
Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan
Abstract:
Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.Keywords: Olefin, spent caustic, red oil, caustic wash tower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22257510 Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing
Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin
Abstract:
The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.Keywords: Level Crossing Sampling, Activity Selection, Adaptive Rate Filtering, Computational Complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13617509 C-LNRD: A Cross-Layered Neighbor Route Discovery for Effective Packet Communication in Wireless Sensor Network
Authors: K. Kalaikumar, E. Baburaj
Abstract:
One of the problems to be addressed in wireless sensor networks is the issues related to cross layer communication. Cross layer architecture shares the information across the layer, ensuring Quality of Services (QoS). With this shared information, MAC protocol adapts effective functionality maintenance such as route selection on changeable sensor network environment. However, time slot assignment and neighbour route selection time duration for cross layer have not been carried out. The time varying physical layer communication over cross layer causes high traffic load in the sensor network. Though, the traffic load was reduced using cross layer optimization procedure, the computational cost is high. To improve communication efficacy in the sensor network, a self-determined time slot based Cross-Layered Neighbour Route Discovery (C-LNRD) method is presented in this paper. In the presented work, the initial process is to discover the route in the sensor network using Dynamic Source Routing based Medium Access Control (MAC) sub layers. This process considers MAC layer operation with dynamic route neighbour table discovery. Then, the discovered route path for packet communication employs Broad Route Distributed Time Slot Assignment method on Cross-Layered Sensor Network system. Broad Route means time slotting on varying length of the route paths. During packet communication in this sensor network, transmission of packets is adjusted over the different time with varying ranges for controlling the traffic rate. Finally, Rayleigh fading model is developed in C-LNRD to identify the performance of the sensor network communication structure. The main task of Rayleigh Fading is to measure the power level of each communication under MAC sub layer. The minimized power level helps to easily reduce the computational cost of packet communication in the sensor network. Experiments are conducted on factors such as power factor, on packet communication, neighbour route discovery time, and information (i.e., packet) propagation speed.
Keywords: Medium access control, neighbour route discovery, wireless sensor network, Rayleigh fading, distributed time slot assignment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774