Search results for: the theory of fuzzy sets.
2776 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective
Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan
Abstract:
In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.
Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032775 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems
Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen
Abstract:
The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15852774 k-Fuzzy Ideals of Ternary Semirings
Authors: Sathinee Malee, Ronnason Chinram
Abstract:
The notion of k-fuzzy ideals of semirings was introduced by Kim and Park in 1996. In 2003, Dutta and Kar introduced a notion of ternary semirings. This structure is a generalization of ternary rings and semirings. The main purpose of this paper is to introduce and study k-fuzzy ideals in ternary semirings analogous to k-fuzzy ideals in semirings considered by Kim and Park.Keywords: k-ideals, k-fuzzy ideals, fuzzy k-ideals, ternarysemirings
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18132773 Applications of Trigonometic Measures of Fuzzy Entropy to Geometry
Authors: Om Parkash, C.P.Gandhi
Abstract:
In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.Keywords: Entropy, Uncertainty, Fuzzy Entropy, Concavity, Symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15332772 Neuro-Fuzzy System for Equalization Channel Distortion
Authors: Rahib H. Abiyev
Abstract:
In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.
Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16322771 Using Fuzzy Numbers in Heavy Aggregation Operators
Authors: José M. Merigó, Montserrat Casanovas
Abstract:
We consider different types of aggregation operators such as the heavy ordered weighted averaging (HOWA) operator and the fuzzy ordered weighted averaging (FOWA) operator. We introduce a new extension of the OWA operator called the fuzzy heavy ordered weighted averaging (FHOWA) operator. The main characteristic of this aggregation operator is that it deals with uncertain information represented in the form of fuzzy numbers (FN) in the HOWA operator. We develop the basic concepts of this operator and study some of its properties. We also develop a wide range of families of FHOWA operators such as the fuzzy push up allocation, the fuzzy push down allocation, the fuzzy median allocation and the fuzzy uniform allocation.Keywords: Aggregation operators, Fuzzy numbers, Fuzzy OWAoperator, Heavy OWA operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16002770 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables
Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi
Abstract:
In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14142769 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372768 Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP)
Authors: C. Ardil
Abstract:
The Turkish Air Force needs to acquire a sixth- generation fighter aircraft in order to maintain its air superiority and dominance against its rivals under the risks posed by global geopolitical opportunities and threats. Accordingly, five evaluation criteria were determined to evaluate the sixth-generation fighter aircraft alternatives and to select the best one. Systematically, a new fuzzy preference optimization programming (POP) method is proposed to select the best sixth generation fighter aircraft in an uncertain environment. The POP technique considers both quantitative and qualitative evaluation criteria. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to a multiple criteria decision-making problem to evaluate and select sixth-generation fighter aircraft. The results of the fuzzy POP method are compared with the results of the fuzzy TOPSIS approach to validate it. According to the comparative analysis, fuzzy POP and fuzzy TOPSIS methods get the same results. This demonstrates the applicability of the fuzzy POP technique to address the sixth-generation fighter selection problem.
Keywords: Fighter aircraft selection, sixth-generation fighter aircraft, fuzzy decision process, multiple criteria decision making, preference optimization programming, POP, TOPSIS, Kizilelma, MIUS, fuzzy set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4472767 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration
Authors: Binu Thomas, Raju G., Sonam Wangmo
Abstract:
In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19902766 S-Fuzzy Left h-Ideal of Hemirings
Authors: D.R Prince Williams
Abstract:
The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.
Keywords: hemiring, left h-ideal, anti fuzzy h-ideal, S-fuzzy left hideal, t-conorm , homomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17232765 Comparative Study of Decision Trees and Rough Sets Theory as Knowledge ExtractionTools for Design and Control of Industrial Processes
Authors: Marcin Perzyk, Artur Soroczynski
Abstract:
General requirements for knowledge representation in the form of logic rules, applicable to design and control of industrial processes, are formulated. Characteristic behavior of decision trees (DTs) and rough sets theory (RST) in rules extraction from recorded data is discussed and illustrated with simple examples. The significance of the models- drawbacks was evaluated, using simulated and industrial data sets. It is concluded that performance of DTs may be considerably poorer in several important aspects, compared to RST, particularly when not only a characterization of a problem is required, but also detailed and precise rules are needed, according to actual, specific problems to be solved.Keywords: Knowledge extraction, decision trees, rough setstheory, industrial processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16332764 Fuzzy Estimation of Parameters in Statistical Models
Authors: A. Falsafain, S. M. Taheri, M. Mashinchi
Abstract:
Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22712763 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem
Authors: E. Koyuncu
Abstract:
The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.
Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12832762 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values
Authors: Hidehiko Okada
Abstract:
Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.
Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15452761 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules
Authors: Tamanna Siddiqui, M. Afshar Alam
Abstract:
Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14852760 Closed Loop Control of Bridgeless Cuk Converter Using Fuzzy Logic Controller for PFC Applications
Authors: Nesapriya. P., S. Rajalaxmi
Abstract:
This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Keywords: Fuzzy Logic Controller (FLC), Bridgeless rectifier, Cuk converter, Pulse Width Modulation (PWM), Power Factor Correction, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40612759 More on Gaussian Quadratures for Fuzzy Functions
Authors: Shu-Xin Miao
Abstract:
In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.
Keywords: Guassian quadrature rules, fuzzy number, fuzzy integral, fuzzy solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14382758 Filteristic Soft Lattice Implication Algebras
Abstract:
Applying the idea of soft set theory to lattice implication algebras, the novel concept of (implicative) filteristic soft lattice implication algebras which related to (implicative) filter(for short, (IF-)F-soft lattice implication algebras) are introduced. Basic properties of (IF-)F-soft lattice implication algebras are derived. Two kinds of fuzzy filters (i.e.(2, 2 _qk)((2, 2 _ qk))-fuzzy (implicative) filter) of L are introduced, which are generalizations of fuzzy (implicative) filters. Some characterizations for a soft set to be a (IF-)F-soft lattice implication algebra are provided. Analogously, this idea can be used in other types of filteristic lattice implication algebras (such as fantastic (positive implicative) filteristic soft lattice implication algebras).
Keywords: Soft set, (implicative) filteristic lattice implication algebras, fuzzy (implicative) filters, ((2, 2 _qk)) (2, 2 _ qk)-fuzzy(implicative) filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562757 Characterizations of Ordered Semigroups by (∈,∈ ∨q)-Fuzzy Ideals
Authors: Jian Tang
Abstract:
Let S be an ordered semigroup. In this paper we first introduce the concepts of (∈,∈ ∨q)-fuzzy ideals, (∈,∈ ∨q)-fuzzy bi-ideals and (∈,∈ ∨q)-fuzzy generalized bi-ideals of an ordered semigroup S, and investigate their related properties. Furthermore, we also define the upper and lower parts of fuzzy subsets of an ordered semigroup S, and investigate the properties of (∈,∈ ∨q)-fuzzy ideals of S. Finally, characterizations of regular ordered semigroups and intra-regular ordered semigroups by means of the lower part of (∈ ,∈ ∨q)-fuzzy left ideals, (∈,∈ ∨q)-fuzzy right ideals and (∈,∈ ∨q)- fuzzy (generalized) bi-ideals are given.
Keywords: Ordered semigroup, regular ordered semigroup, intraregular ordered semigroup, (∈, ∈ ∨q)-fuzzy left (right) ideal of an ordered semigroup, (∈, ∈ ∨q)-fuzzy (generalized) bi-ideal of an ordered semigroup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20132756 Improving the Quality of Transport Management Services with Fuzzy Signatures
Authors: Csaba I. Hencz, István Á. Harmati
Abstract:
Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.
Keywords: Freight transport, decision support, information handling, fuzzy methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8162755 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method
Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu
Abstract:
In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.
Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23862754 Fuzzy Decision Making via Multiple Attribute
Authors: Behnaz Zohouri, Mahdi Zowghiand, Mohsen haghighi
Abstract:
In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.
Keywords: Multiple Attribute Decision Making, Triangular fuzzy numbers, ranking index, Fuzzy Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14732753 Isomorphism on Fuzzy Graphs
Authors: A.Nagoor Gani, J.Malarvizhi
Abstract:
In this paper, the order, size and degree of the nodes of the isomorphic fuzzy graphs are discussed. Isomorphism between fuzzy graphs is proved to be an equivalence relation. Some properties of self complementary and self weak complementary fuzzy graphs are discussed.Keywords: complementary fuzzy graphs, co-weak isomorphism, equivalence relation, fuzzy relation, weak isomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40762752 Project Selection by Using a Fuzzy TOPSIS Technique
Authors: M. Salehi, R. Tavakkoli-Moghaddam
Abstract:
Selection of a project among a set of possible alternatives is a difficult task that the decision maker (DM) has to face. In this paper, by using a fuzzy TOPSIS technique we propose a new method for a project selection problem. After reviewing four common methods of comparing investment alternatives (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in a TOPSIS technique. First we calculate the weight of each criterion by a pairwise comparison and then we utilize the improved TOPSIS assessment for the project selection.Keywords: Fuzzy Theory, Pairwise Comparison, ProjectSelection, TOPSIS Technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26392751 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18832750 An Intelligent Fuzzy-Neural Diagnostic System for Osteoporosis Risk Assessment
Authors: Chin-Ming Hong, Chin-Teng Lin, Chao-Yen Huang, Yi-Ming Lin
Abstract:
In this article, we propose an Intelligent Medical Diagnostic System (IMDS) accessible through common web-based interface, to on-line perform initial screening for osteoporosis. The fundamental approaches which construct the proposed system are mainly based on the fuzzy-neural theory, which can exhibit superiority over other conventional technologies in many fields. In diagnosis process, users simply answer a series of directed questions to the system, and then they will immediately receive a list of results which represents the risk degrees of osteoporosis. According to clinical testing results, it is shown that the proposed system can provide the general public or even health care providers with a convenient, reliable, inexpensive approach to osteoporosis risk assessment.Keywords: BMD, osteoporosis, IMDS, fuzzy-neural theory, web interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19492749 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers
Authors: Nurhakimah Ab. Rahman, Lazim Abdullah
Abstract:
According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.
Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17642748 An Innovative Fuzzy Decision Making Based Genetic Algorithm
Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad
Abstract:
Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.Keywords: Genetic Algorithm, Fuzzy Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082747 Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers
Authors: Jing Liu
Abstract:
In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators.
Keywords: Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775