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Abstract—In this paper, motivated by the ideas of dependent
weighted aggregation operators, we develop some new hesitant
fuzzy dependent weighted aggregation operators to aggregate the
input arguments taking the form of hesitant fuzzy numbers rather
than exact numbers, or intervals. In fact, we propose three hesitant
fuzzy dependent weighted averaging(HFDWA) operators, and three
hesitant fuzzy dependent weighted geometric(HFDWG) operators
based on different weight vectors, and the most prominent
characteristic of these operators is that the associated weights only
depend on the aggregated hesitant fuzzy numbers and can relieve
the influence of unfair hesitant fuzzy numbers on the aggregated
results by assigning low weights to those “false” and “biased” ones.
Some examples are given to illustrated the efficiency of the
proposed operators.

Keywords—Hesitant fuzzy numbers, hesitant fuzzy dependent
weighted averaging(HFDWA) operators, hesitant fuzzy dependent
weighted geometric(HFDWG) operators.

I. INTRODUCTION

TO fuse individual experts’ preference information into
an overall one, many operators have been developed in

the past decades. Among them, the ordered weighted
averaging(OWA) operator introduced by Yager[1] is the most
widely used one, and has received more and more attention
since its appearance. A lot of extensions of the OWA
operator have been proposed, such as the uncertain
aggregation operators[2], the induced aggregation
operators[3], the uncertain linguistic aggregation operator[4].
All of the above operators consist of the following three
steps[2]: (1) reorder the input arguments in descending
order; (2) determine the OWA weights; and (3) multiply
these ordered arguments, and then aggregate all the weighted
arguments. Because the order relation and the operational
laws of different type input information have been solved
successfully, the key of the OWA operator is to determine its
associated weights. Many scholars have studied this problem,
and developed some useful approaches[1-6]. Some recent
achievements include: In 2005, Xu[5] proposed a technique
to determine the OWA weights using the input arguments,
and introduced some dependent OWA operators, which can
relieve the influence of unfair arguments by assigning small
weights to these far away from the mean. Then, this
technique is extended to aggregated different type input
information by many authors, for example, Xu[2,6] proposed
some dependent uncertain ordered weighted aggregations
operators, and Wei et al.[7] developed some dependent
2-tuple linguistic aggregation operators, including the
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dependent 2-tuple ordered weighted averaging(D2TOWA)
operator and the dependent 2-tuple ordered weighted
geometric(D2TOWG) operator.

Recently, Torra and Narukawa[8] and Torra[9] proposed a
new generalization of fuzzy set(FS): the hesitant fuzzy
set(HFS), which can be applied in the situations where there
are some difficulties in determining the membership of an
element to a set caused by a doubt between a few different
values. Much work has been done about HFS[10-12], and
some aggregation operators for HFSs have been proposed.
However, the weights used by all of these operators are
argument-independent, which is derived only by the
particular ordered positions of the aggregated arguments. It
seems that in the literature there is no investigation on the
dependent weighted aggregation operators, which are
argument-dependent operators, for HFSs. Thus, to solve this
issue, in this paper, based on the dependent weighted
aggregation operators in [2,13], we propose some hesitant
fuzzy dependent weighted aggregation operators to aggregate
the input arguments taking the form of hesitant fuzzy
numbers(HFNs), including the hesitant fuzzy dependent
weighted averaging(HFDWA) operators, and the hesitant
fuzzy dependent weighted geometric(HFDWG) operators.

The rest of this paper is organized as follows: In Section
II, we briefly review some basic concept such as the
dependent weighted averaging(DWA) operator, the dependent
weighted geometric(DWG) operator and the hesitant fuzzy
sets. In Section III, we present the HFDWA operators and
the HFDWG operators, and some of their properties are
studied. In Section IV, a numerical example is used to verify

paper.

II. PRELIMINARIES

The dependent weighted average(DWA) operator and the
dependent weighted geometric(DWG) operator were
introduced by Xu[2,6], which can be defined as follows:

Definition 1.[2,6] Let a1, a2, . . . , an be a collection of
arguments, and let μ be the average value of these
arguments, i.e., μ = 1

n

∑n
i=1 ai, (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that aσ(i−1) ≥ aσ(i) for all
i = 2, 3, . . . , n, then we call

DWA(a1, a2, . . . , an) =
n∑

i=1

wiaσ(i)
Finance and Economics, Hangzhou 310018, China. (e-mail: ljlj8899@163.com).

the proposed operators. Finally, Section V summarizes the

A. The DWA operator and the DWG operator
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the dependent weighted averaging(DWA) operator, and

DWG(a1, a2, . . . , an) =
n∏

i=1

awi

σ(i)

the dependent weighted geometric(DWG) operator, where
wi =

s(aσ(i),μ)
n∑

j=1

s(aσ(j),μ)

, and s(aσ(i), μ) = 1 − |aσ(i)−μ|
n∑

j=1

|aσ(j)−μ|
. In

fact, the DWA operator and the DWG operator can be
rewritten as:

DWA(a1, a2, . . . , an) =

n∑
i=1

s(ai, μ)ai

n∑
i=1

s(ai, μ)
,

and

DWG(a1, a2, . . . , an) =
n∏

i=1

a

s(ai,μ)/

n∑
i=1

s(ai,μ)

i ,

respectively. Therefore, the above two operators are neat and
dependent OWA operator or OWG operator.

B. Hesitant fuzzy set

Hesitant fuzzy set(HFS) was originally introduced by Torra
and Narukawa[8] and Torra[9], and it permits the membership
degree of an element to a set to be represented as several
possible values between 0 and 1.

Definition 2. ([8,9]) Let X be a fixed set, a hesitant fuzzy
set(HFS) on X is in terms of a function that when applied to
X returns a subset of [0,1], which can be represented as the
following mathematical symbol:

E = {〈x, h(x)〉|x ∈ X}, (1)

where h(x) is a set of some values in [0,1], denoting the
possible membership degrees of the element x ∈ X to the
set E. For convenience, we call h(x) a hesitant fuzzy
number(HFN) and H the set of all the HFNs.

For two HFNs h1 and h2, Xu and Xia[10] proposed some
distance measures for HFNs, and in this paper, we utilize the
following hesitant normalized Hamming distance:

d(h1, h2) =
1

lmax

lmax∑
j=1

|hσ(j)
1 − h

σ(j)
2 |, (2)

where h
σ(j)
1 and h

σ(j)
2 are the jth largest values in h1 and

h2, respectively, and lmax = max{l1, l2}, l1 is the number of
values in h1, and l2 is the number of values in h2. In fact, in
most cases, l1 �= l2, thus, in [10], Xu and Xia have proposed
a technique to extend the shorter one until both of them have
the same length. They suggested to add the same value several
times in the shorter one, and the value can be any one in it. In
the following, we add the minimum value in the shorter one.

Definition 3.[11] For a HFN h, s(h) = 1
�h

∑
γ∈h γ is called

the score function of h, where �h is the number of the elements
in h. Moreover, for two HENs h1 and h2, if s(h1) > s(h2),
then h1 > h2; if s(h1) = s(h2), then h1 = h2.

Let h, h1 and h2 be three HFNs, then the operational laws
on the HFNs are given as follows.

(1) hλ = ∪γ∈h{γλ}.
(2) λh = ∪γ∈h{1− (1− γ)λ}.
(3) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2}.
(4) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

III. HFDWA AND HFDWG OPERATORS

First, we define the mean, the variance and the similarity of
a collection of HFNs.

Definition 4. Let hi(i = 1, 2, . . . , n) be a collection of
hesitant fuzzy numbers with the same number of
values(otherwise, we can extend the shorter ones by adding
the minimum element in them until all the HFNs have the
same number of values), and then we define the mean of
these hesitant fuzzy numbers as h̃, where

h̃ =

{
1

n

n∑
i=1

h
σ(l)
i , σ(l) = 1, 2, . . . , p

}
, (3)

in which h
σ(l)
i is the lth largest values in hi(i = 1, 2, . . . , n),

and p is the number of values in hi(i = 1, 2, . . . , n).
Example 1. Let h1 = {0.1, 0.2, 0.3}, h2 = {0.4, 0.5},

h3 = {0.3} be three HFNs, then we extend h2, h3 until they
have the same length of h1. That is:
h2 = {0.4, 0.4, 0.5}, h3 = {0.3, 0.3, 0.3}, thus their mean
h̃ = {0.2667, 0.3, 0.3667}. Based on the distance measure
and mean of the HFNs, we can define the variance of HFNs
as follows.

Definition 5. Let hi(i = 1, 2, . . . , n) be a collection of
hesitant fuzzy numbers, then we define the variance of these
hesitant fuzzy numbers as

σ̃ =

√√√√ 1

n

n∑
i=1

d2(hi, h̃). (4)

Definition 6. Let hi(i = 1, 2, . . . , n) be a collection of
hesitant fuzzy numbers, then we call

s(hσ(i), h̃) = 1− d(hσ(i), h̃)
n∑

j=1

d(hσ(j), h̃)
, i = 1, 2, . . . , n, (5)

the degree of similarity between the ith largest hesitant fuzzy
argument hσ(i) and the mean h̃, where (σ(1), σ(2), . . . , σ(n))
is a permutation of (1, 2, . . . , n) such that hσ(i−1) ≥ hσ(i) for
all i = 2, 3, . . . , n.

A. HFDWA and HFDWG operators based on Xu’s idea

In the following, to aggregate some HFNs, motivated by
Xu[2], we give a weighting vector w = (w1, w2, . . . , wn)

�,
which can assign low weights to these values far away to their
mean. That is to say, the closer an HFN is to the mid one(s),
the more the weight. Then, we can define the weights as:

wi =
s(hσ(i), h̃)

n∑
j=1

s(hσ(j), h̃)
, i = 1, 2, . . . , n. (6)
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Obviously, wi ≥ 0, i = 1, 2, . . . , n and
n∑

i=1

wi = 1. Especially,

if hi = hj , for all i, j = 1, 2, . . . , n, then by (6), we have
wi = 1/n, for all i = 1, 2, . . . , n.

Let hi(i = 1, 2, . . . , n) be a collection of hesitant fuzzy
numbers. Based on the previous operational laws of HFNs,
we extend the DWA operator and the DWG operator to the
hesitant fuzzy environments.

Definition 7. Let hi(i = 1, 2, . . . , n) be a collection of
hesitant fuzzy numbers, then we call

HFDWA(h1, h2, . . . , hn) =
n∑

i=1

wihσ(i)

=

n∑
i=1

s(hσ(i), h̃)hσ(i)/

n∑
i=1

s(hσ(i), h̃), (7)

a hesitant fuzzy dependent weighted averaging(HFDWA)
operator, where hσ(i) is the ith largest of h1, h2, . . . , hn, and
wi(i = 1, 2, . . . , n) is defined by Eq.(6).

Since
n∑

i=1

s(hσ(i), h̃)hσ(i) =
n∑

i=1

s(hi, h̃)hi and
n∑

i=1

s(hσ(i), h̃) =
n∑

i=1

s(hi, h̃), then the HFDWA operator can

be rewritten as:

HFDWA(h1, h2, . . . , hn) =

n∑
i=1

s(hi, h̃)hi/

n∑
i=1

s(hi, h̃).

(8)
Therefore, the HFDWA operator is independent of the
ordering, thus it is a neat operator.

Similar to Xu[2], we have the following conclusion:
Theorem 1. Let hi(i = 1, 2, . . . , n) be a collection of

hesitant fuzzy numbers, and let h̃ be the mean of these
HFNs, (σ(1), σ(2), . . . , σ(n)) is a permutation of
(1, 2, . . . , n) such that hσ(i−1) ≥ hσ(i) for all i = 2, 3, . . . , n.
If s(hσ(i), h̃) ≥ s(hσ(j), h̃), then wi ≥ wj .

Based on the DWG operator, we can define the HFDWG
operator as follows:

Definition 8. Let hi(i = 1, 2, . . . , n) be a collection of
hesitant fuzzy numbers on X , then we call

HFDWG(h1, h2, . . . , hn) =

n∏
i=1

hwi

σ(i)

=
n∏

i=1

h

s(hσ(i),h̃)/

n∑
j=1

s(hσ(j),h̃)

σ(i) , (9)

a hesitant fuzzy dependent weighted geometric(HFDWG)
operator, where hσ(i) is the ith largest of h1, h2, . . . , hn, and
wi

Similarly, the HFDWG operator can be rewritten as:

HFDWG(h1, h2, . . . , hn) =

n∏
i=1

h

s(hi,h̃)/
n∑

j=1

s(hj ,h̃)

i . (10)

Example 2. Further consider the three HFNs, then from
Definition 3, we have h2 > h3 > h1. Hence, we can reorder
the arguments hi(i = 1, 2, 3) in descending order:

hσ(1) = {0.4, 0.5}, hσ(2) = {0.3}, hσ(3) = {0.1, 0.2, 0.3}. By
(5), we have s(hσ(1), h̃) = 0.5417, s(hσ(2), h̃) =

0.8750, s(hσ(3), h̃) = 0.5833. And by (6), we have
w1 = 0.2708, w2 = 0.4375, w3 = 0.2917. Then, from (7), it
follows that

HFDWA(h1, h2, h3)

= 0.2708× {0.4, 0.5}+ 0.4375× {0.3}
+0.2917× {0.1, 0.2, 0.3}

= {0.1292, 0.1712}+ {0.1445}+ {0.0303, 0.0630, 0.0988}
= {0.2776, 0.3020, 0.3286, 0.3124, 0.3356, 0.3610}.

Furthermore, by (9), we have

HFDWG(h1, h2, h3)

= {0.4, 0.5}0.2708 × {0.3}0.4375 × {0.1, 0.2, 0.3}0.2917
= {0.7802, 0.8288} × {0.5909} × {0.5109, 0.6254, 0.7039}
= {0.2354, 0.2881, 0.3243, 0.2500, 0.3061, 0.3445}.

B. HFDWA and HFDWG operators based on the normal
distribution

The normal distribution is one of the most commonly
observed and is the starting point for modeling many natural
process, it is usually found in events that are the aggregation
of many smaller, but independent random events. In [2],
utilizing the normal distribution, Xu introduced a normal
distribution based method to determine the aggregated
weights, which only depends on the aggregated arguments

(6). That is, the closer an argument is to the mid one(s), the
more the weight. In fact, we give another weight vector
whose components are defined as follows:

wi =
1√
2πσ̃

e−
d2(hσ(i),h̃)

2σ̃2 , i = 1, 2, . . . , n, (11)

where h̃ and σ̃ are the mean and the variance of these
aggregated arguments h1, h2, . . . , hn, respectively. To
normalize the weight vector w = (w1, w2, . . . , wn)

�, we
have

wi =

1√
2πσ̃

e−
d2(hσ(i),h̃)

2σ̃2

n∑
j=1

1√
2πσ̃

e−
d2(hσ(j),h̃)

2σ̃2

=
e−

d2(hσ(i),h̃)

2σ̃2

n∑
i=1

e−
d2(hσ(i),h̃)

2σ̃2

, i = 1, 2, . . . , n.

(12)
Then, we can present another hesitant fuzzy dependent
weighted averaging operator:

HFDWA(h1, h2, . . . , hn) =
n∑

i=1

wihσ(i)

=

n∑
i=1

e−
d2(hσ(i),h̃)

2σ̃2 hσ(i)

n∑
i=1

e−
d2(hσ(i),h̃)

2σ̃2

=

n∑
i=1

e−
d2(hi,h̃)

2σ̃2 hi

n∑
i=1

e−
d2(hi,h̃)

2σ̃2

. (13)

Obviously, (13) is independent of the ordering, therefore, it is
also a neat operator.

(i = 1, 2, . . . , n) is defined by (6).

and has the similar property as the weights defined by
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Furthermore, by (9) and (12), we have

HFDWG(h1, h2, . . . , hn) =
n∏

i=1

h

e
− d2(hi,h̃)

2σ̃2 /

n∑
i=1

e
− d2(hi,h̃)

2σ̃2

i .

(14)

C. HFDWA and HFDWG operators based on trigonometric
function

Recently, Wang et al.[12] proposed an approach to obtaining
the OWA operator’s weights based on trigonometric function.
In the next part, we will extend this approach to accommodate
the situations where the input arguments are hesitant fuzzy
numbers.

Step 1. For a collection of HFNs hi(i = 1, 2, . . . , n), by
Eq.(3), compute their mean h̃.

Step 2. Compute a = maxi d(hi, h̃) and b = mini d(hi, h̃)
by (2), if a = 0, then set wi = 1/n, i = 1, 2, . . . , n, otherwise,
compute ui(i = 1, 2, . . . , n) by ui = (d(hi, h̃))/(2a+2b), i =
1, 2, . . . , n.

Step 3. Compute the weights by:

wi =
cos(uσ(i)π)

n∑
j=1

cos(uσ(j)π)
, i = 1, 2, . . . , n. (15)

Example 3. For the HFNs given in Example 1, we compute
their weights by the above procedure.

(1). By (3), h̃ = {0.2667, 0.3, 0.3667}. (2). By (2), a =
0.1222. Then, u1 = 0.3929, u2 = 0.1071, u3 = 0.3571. (3).
By (15), we have w1 = 0.1934, w2 = 0.5526, w3 = 0.2540.

Based on the DWA and (15), we can define a new HFDWA
operator as follows:

HFDWA(h1, h2, . . . , hn) =

n∑
i=1

wihσ(i)

=

n∑
i=1

cos(uσ(i)π)hσ(i)

n∑
j=1

cos(uσ(j)π)
=

n∑
i=1

cos(uiπ)hi

n∑
i=1

cos(uiπ)
. (16)

And we also can define a new HFDWG operator as follows:

HFDWG(h1, h2, . . . , hn) =
n∏

i=1

hwi

σ(i)

=
n∏

i=1

h

cos(uσ(i)π)

n∑
j=1

cos(uσ(j)π)

σ(i) =
n∏

i=1

h

cos(uiπ)
n∑

i=1

cos(uiπ)

i . (17)

IV. MULTIPLE ATTRIBUTE DECISION MAKING UNDER
HESITANT FUZZY ENVIRONMENT

In this section, we apply the proposed operators to multiple
attribute decision making under hesitant fuzzy environment.

Example 4. Let us consider a factory which intends to
select a new site for new buildings. Three alternatives
Ai(i = 1, 2, 3) are available, and the decision makers
consider three criteria to decide which site to choose:

G1(income), G2(location), G3(environment). The weight
vector w of the criteria Gj(j = 1, 2, 3) is unknown. Assume
that the characteristics of the alternatives Ai(i = 1, 2, 3) with
respect to the criteria Gj(j = 1, 2, 3) are represented by
HFNs hij = ∪γij∈hij{γij}(i, j = 1, 2, 3), where γij indicates
the degree that the alternative Ai satisfies the criterion Gj .
All hij(i, j = 1, 2, 3) are contained in the hesitant fuzzy
decision matrix H = (hij)3×3 (see Table I). First, we use (6)

TABLE I
THE HESITANT FUZZY DECISION MATRIX.

G1 G2 G3

A1 {0.6, 0.7, 0.8} {0.25} {0.4, 0.5}
A2 {0.4} {0.4, 0.5} {0.3, 0.55, 0.6}
A3 {0.2, 0.4} {0.5, 0.6} {0.5, 0.7}

to compute the weights for different alternatives. Then, we
utilize the HFDWA operator (7) and the HFDWA operator
(9) to aggregate all the performance values hij(j = 1, 2, 3)
of the ith line and get the overall performance value hi

corresponding to the alternative Ai. Then we calculate the
scores of all the alternatives according to hi(i = 1, 2, 3). For
HFDWA operator, we have:

s(h1) = 0.4889, s(h2) = 0.4466, s(h3) = 0.5223.

And, for HFDWG operator, we have:

s(h1) = 0.4253, s(h2) = 0.4366, s(h3) = 0.4796.

Since s(h3) > s(h1) > s(h2) for the HFDWA operator, then,
by Definition 3, we get the ranking of the HFNs:

h3 > h1 > h2,

and similarly, for the HFDWG operator,

h3 > h2 > h1,

and thus, A1 is the best alternative for all the two operators.

V. CONCLUSION

In this paper, to aggregated the hesitant fuzzy numbers,
we have proposed three methods to generate the aggregating
weights, and developed some hesitant fuzzy dependent
weighted averaging(HFDWA) operators and hesitant fuzzy
dependent weighted geometric(HFDWG) operators, which
can relieve the influence of unfair HFNs on the aggregated
results by assigning low weights to those “false” and
“biased” ones. At the end, a practical numerical example has
been presented to show the developed operators.
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