Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30753
Filteristic Soft Lattice Implication Algebras

Authors: Yi Liu, Yang Xu


Applying the idea of soft set theory to lattice implication algebras, the novel concept of (implicative) filteristic soft lattice implication algebras which related to (implicative) filter(for short, (IF-)F-soft lattice implication algebras) are introduced. Basic properties of (IF-)F-soft lattice implication algebras are derived. Two kinds of fuzzy filters (i.e.(2, 2 _qk)((2, 2 _ qk))-fuzzy (implicative) filter) of L are introduced, which are generalizations of fuzzy (implicative) filters. Some characterizations for a soft set to be a (IF-)F-soft lattice implication algebra are provided. Analogously, this idea can be used in other types of filteristic lattice implication algebras (such as fantastic (positive implicative) filteristic soft lattice implication algebras).

Keywords: soft set, (implicative) filteristic lattice implication algebras, fuzzy (implicative) filters, ((2

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287


[1] Y. Xu, Lattice implication algebra, J. Southwest Jiaotong Univ., 28(1993), 20-27.
[2] Y. Xu and K.Y. Qin, Fuzzy lattice implication algebras, J.Southwest Jiaotong Univ., 2(1995), 121-27.
[3] Y. Xu and K.Y.Qin, On filters of lattice implication algebras, J.Fuzzy Math., 2(1993), 251-260.
[4] Y. Xu, D. Ruan, K. Y.Qin, J. Liu, Lattice-valued logic-an alternative approach to treat fuzziness and incomparability, Berlin: Springer-Verlag, 2003.
[5] L. A. Zadeh, Fuzzy set, Inform. Sci., 8(1965), 338-353.
[6] P. M. Pu and Y.M.Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
[7] Y. Liu and Y. Xu, Inter-valued (®, ┬»)-fuzzy implication subalgebras, Comput. Sci., 38(4)(2011),263-266.
[8] Y. Liu and Y. Xu, New types of fuzzy filters on lattice implication algebras, J. Math. Research., 3(2011),57-63.
[9] S. K. Bhakat and P. Das, (2, 2 _q)-fuzzy subgroups, Fuzzy Sets Syst., 80(1996), 359-368.
[10] B. Davvaz, (2, 2 _q)-fuzzy subnear-rings and ideals, Soft Comput., 10(2006), 206-211.
[11] W. A. Dudek, M. Shabir, M. Irfan Ali, (®, ┬»)-fuzzy ideals of hemirings, Comput. Math. Appl., 58 (2009), 310-321.
[12] D. Molodtsov, Soft set-first results, Comput. Math. Appl., 37(1999), 19-31.
[13] H. Aktas and N. Cagman, soft sets and soft groups, Inform. Sci., 177(2009), 2726-2735.
[14] P. K. Maji, R. Biswas, A. R. Roy, soft set theory, Comput. Math. Appl., 45 (2003), 555-562.
[15] P. K. Maji, R. Biswas, A. R. Roy, fuzzy soft set, J. fuzzy Math. Appl., 9(3)(2001), 589-602.
[16] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083.
[17] F. Feng, Y. B.Jun, X. Z. Zhang, Soft semiring, Comput. Math. Appl., 56 (2008), 2621-2628.
[18] Y. B.Jun and S. Z.Song, Soft subalgebras and soft ideals of BCK/BCIalgebras related to fuzzy set theory, Math. Commun., 14(2009), 271-281.
[19] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci., 178(2008), 2446-2475.
[20] Y.B.Jun, Y.Xu, J.Ma, Redefined fuzzy implication filters, Inform. Sci., 177(2007), 422-1429.
[21] J.M.Zhan and Y.B.Jun, Notes on redefined fuzzy implication filters of lattice implication algebras, Inform. Sci., 179(2009), 3182-3186.
[22] J. M. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(2010), 2037-2046.
[23] Y.Q. Yin and J. M. Zhan, New types of fuzzy filters in BL-algebras, Comput. Math. Appl., 59(2010), 2115-2125.
[24] D. Pei and D. Miao, From soft sets to information systems, Granular comput., 2005 IEEE Inter. Conf., 2(2005), 419-430.