**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30753

##### Filteristic Soft Lattice Implication Algebras

**Abstract:**

Applying the idea of soft set theory to lattice implication algebras, the novel concept of (implicative) filteristic soft lattice implication algebras which related to (implicative) filter(for short, (IF-)F-soft lattice implication algebras) are introduced. Basic properties of (IF-)F-soft lattice implication algebras are derived. Two kinds of fuzzy filters (i.e.(2, 2 _qk)((2, 2 _ qk))-fuzzy (implicative) filter) of L are introduced, which are generalizations of fuzzy (implicative) filters. Some characterizations for a soft set to be a (IF-)F-soft lattice implication algebra are provided. Analogously, this idea can be used in other types of filteristic lattice implication algebras (such as fantastic (positive implicative) filteristic soft lattice implication algebras).

**Keywords:**
soft set,
(implicative) filteristic lattice implication algebras,
fuzzy (implicative) filters,
((2

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1073221

**References:**

[1] Y. Xu, Lattice implication algebra, J. Southwest Jiaotong Univ., 28(1993), 20-27.

[2] Y. Xu and K.Y. Qin, Fuzzy lattice implication algebras, J.Southwest Jiaotong Univ., 2(1995), 121-27.

[3] Y. Xu and K.Y.Qin, On filters of lattice implication algebras, J.Fuzzy Math., 2(1993), 251-260.

[4] Y. Xu, D. Ruan, K. Y.Qin, J. Liu, Lattice-valued logic-an alternative approach to treat fuzziness and incomparability, Berlin: Springer-Verlag, 2003.

[5] L. A. Zadeh, Fuzzy set, Inform. Sci., 8(1965), 338-353.

[6] P. M. Pu and Y.M.Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.

[7] Y. Liu and Y. Xu, Inter-valued (®, ┬»)-fuzzy implication subalgebras, Comput. Sci., 38(4)(2011),263-266.

[8] Y. Liu and Y. Xu, New types of fuzzy filters on lattice implication algebras, J. Math. Research., 3(2011),57-63.

[9] S. K. Bhakat and P. Das, (2, 2 _q)-fuzzy subgroups, Fuzzy Sets Syst., 80(1996), 359-368.

[10] B. Davvaz, (2, 2 _q)-fuzzy subnear-rings and ideals, Soft Comput., 10(2006), 206-211.

[11] W. A. Dudek, M. Shabir, M. Irfan Ali, (®, ┬»)-fuzzy ideals of hemirings, Comput. Math. Appl., 58 (2009), 310-321.

[12] D. Molodtsov, Soft set-first results, Comput. Math. Appl., 37(1999), 19-31.

[13] H. Aktas and N. Cagman, soft sets and soft groups, Inform. Sci., 177(2009), 2726-2735.

[14] P. K. Maji, R. Biswas, A. R. Roy, soft set theory, Comput. Math. Appl., 45 (2003), 555-562.

[15] P. K. Maji, R. Biswas, A. R. Roy, fuzzy soft set, J. fuzzy Math. Appl., 9(3)(2001), 589-602.

[16] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083.

[17] F. Feng, Y. B.Jun, X. Z. Zhang, Soft semiring, Comput. Math. Appl., 56 (2008), 2621-2628.

[18] Y. B.Jun and S. Z.Song, Soft subalgebras and soft ideals of BCK/BCIalgebras related to fuzzy set theory, Math. Commun., 14(2009), 271-281.

[19] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci., 178(2008), 2446-2475.

[20] Y.B.Jun, Y.Xu, J.Ma, Redefined fuzzy implication filters, Inform. Sci., 177(2007), 422-1429.

[21] J.M.Zhan and Y.B.Jun, Notes on redefined fuzzy implication filters of lattice implication algebras, Inform. Sci., 179(2009), 3182-3186.

[22] J. M. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(2010), 2037-2046.

[23] Y.Q. Yin and J. M. Zhan, New types of fuzzy filters in BL-algebras, Comput. Math. Appl., 59(2010), 2115-2125.

[24] D. Pei and D. Miao, From soft sets to information systems, Granular comput., 2005 IEEE Inter. Conf., 2(2005), 419-430.