Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2333

Search results for: Fuzzy Non-linear Programming

2333 Adaptation of Iterative Methods to Solve Fuzzy Mathematical Programming Problems

Authors: Ricardo C. Silva, Luiza A. P. Cantao, Akebo Yamakami

Abstract:

Based on the fuzzy set theory this work develops two adaptations of iterative methods that solve mathematical programming problems with uncertainties in the objective function and in the set of constraints. The first one uses the approach proposed by Zimmermann to fuzzy linear programming problems as a basis and the second one obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. We outline similarities between the two iterative methods studied. Selected examples from the literature are presented to validate the efficiency of the methods addressed.

Keywords: Fuzzy Theory, Nonlinear Optimization, Fuzzy Mathematics Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
2332 Simplex Method for Fuzzy Variable Linear Programming Problems

Authors: S.H. Nasseri, E. Ardil

Abstract:

Fuzzy linear programming is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming with fuzzy variables. A convenient method for solving these problems is based on using of auxiliary problem. In this paper a new method for solving fuzzy variable linear programming problems directly using linear ranking functions is proposed. This method uses simplex tableau which is used for solving linear programming problems in crisp environment before.

Keywords: Fuzzy variable linear programming, fuzzy number, ranking function, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
2331 Solution of Fuzzy Maximal Flow Problems Using Fuzzy Linear Programming

Authors: Amit Kumar, Manjot Kaur

Abstract:

In this paper, the fuzzy linear programming formulation of fuzzy maximal flow problems are proposed and on the basis of the proposed formulation a method is proposed to find the fuzzy optimal solution of fuzzy maximal flow problems. In the proposed method all the parameters are represented by triangular fuzzy numbers. By using the proposed method the fuzzy optimal solution of fuzzy maximal flow problems can be easily obtained. To illustrate the proposed method a numerical example is solved and the obtained results are discussed.

Keywords: Fuzzy linear programming, Fuzzy maximal flow problem, Ranking function, Triangular fuzzy number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
2330 Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers

Authors: S. H. Nasseri, E. Ardil, A. Yazdani, R. Zaefarian

Abstract:

The fuzzy set theory has been applied in many fields, such as operations research, control theory, and management sciences, etc. In particular, an application of this theory in decision making problems is linear programming problems with fuzzy numbers. In this study, we present a new method for solving fuzzy number linear programming problems, by use of linear ranking function. In fact, our method is similar to simplex method that was used for solving linear programming problems in crisp environment before.

Keywords: Fuzzy number linear programming, rankingfunction, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221
2329 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
2328 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu

Abstract:

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
2327 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach

Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi

Abstract:

Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.

Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2326 Fuzzy Control of Macroeconomic Models

Authors: Andre A. Keller

Abstract:

The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.

Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
2325 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System

Authors: A. El Ougli, I. Lagrat, I. Boumhidi

Abstract:

In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.

Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
2324 Application of 0-1 Fuzzy Programming in Optimum Project Selection

Authors: S. Sadi-Nezhad, K. Khalili Damghani, N. Pilevari

Abstract:

In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.

Keywords: Fuzzy Programming, Fuzzy Knapsack, FuzzyCapital Budgeting, Fuzzy Project Selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
2323 Order Penetration Point Location using Fuzzy Quadratic Programming

Authors: Hamed Rafiei, Masoud Rabbani

Abstract:

This paper addresses one of the most important issues have been considered in hybrid MTS/MTO production environments. To cope with the problem, a mathematical programming model is applied from a tactical point of view. The model is converted to a fuzzy goal programming model, because a degree of uncertainty is involved in hybrid MTS/MTO context. Finally, application of the proposed model in an industrial center is reported and the results prove the validity of the model.

Keywords: Fuzzy sets theory, Hybrid MTS/MTO, Order penetration point, Quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
2322 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
2321 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

Authors: I. Zamani, M. H. Zarif

Abstract:

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
2320 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao

Abstract:

The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.

Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
2319 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
2318 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
2317 Fuzzy PID Controller with Coupled Rules for a Nonlinear Quarter Car Model

Authors: Şaban Çetin, Özgür Demir

Abstract:

In this study, Fuzzy PID Control scheme is designed for an active suspension system. The main goal of an active suspension system for using in a vehicle model is reducing body deflections and handling high comfort for a passenger car. The present system was modelled as a two-degree-of-freedom (2-DOF) nonlinear vehicle model.

Keywords: Active suspension system, Fuzzy PID controller, a nonlinear quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
2316 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230
2315 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
2314 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
2313 Robust H8 Fuzzy Control Design for Nonlinear Two-Time Scale System with Markovian Jumps based on LMI Approach

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper examines the problem of designing a robust H8 state-feedback controller for a class of nonlinear two-time scale systems with Markovian Jumps described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear two-time scale systems to have an H8 performance are derived. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard nonlinear two-time scale systems. A numerical example is provided to illustrate the design developed in this paper.

Keywords: TS fuzzy, Markovian jumps, LMI, two-time scale systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
2312 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.

Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
2311 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
2310 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

Authors: A. Puras Trueba, J. R. Llata García

Abstract:

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2309 Multi-Objective Multi-Mode Resource-Constrained Project Scheduling Problem by Preemptive Fuzzy Goal Programming

Authors: Phruksaphanrat B.

Abstract:

This research proposes a preemptive fuzzy goal programming model for multi-objective multi-mode resource constrained project scheduling problem. The objectives of the problem are minimization of the total time and the total cost of the project. Objective in a multi-mode resource-constrained project scheduling problem is often a minimization of makespan. However, both time and cost should be considered at the same time with different level of important priorities. Moreover, all elements of cost functions in a project are not included in the conventional cost objective function. Incomplete total project cost causes an error in finding the project scheduling time. In this research, preemptive fuzzy goal programming is presented to solve the multi-objective multi-mode resource constrained project scheduling problem. It can find the compromise solution of the problem. Moreover, it is also flexible in adjusting to find a variety of alternative solutions. 

Keywords: Multi-mode resource constrained project scheduling problem, Fuzzy set, Goal programming, Preemptive fuzzy goal programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
2308 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
2307 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series

Authors: Chokri Slim

Abstract:

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
2306 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
2305 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces

Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri

Abstract:

Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.

Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
2304 Fuzzy Boundary Layer Solution to Nonlinear Hydraulic Position Control Problem

Authors: Mustafa Resa Becan

Abstract:

Sliding mode control with a fuzzy boundary layer is presented to hydraulic position control problem in this paper. A nonlinear hydraulic servomechanism which has an asymmetric cylinder is modeled and simulated first, then the proposed control scheme is applied to this model versus the conventional sliding mode control. Simulation results proved that the chattering free position control is achieved by tuning the fuzzy scaling factors properly.

Keywords: Hydraulic servomechanism, position control, sliding mode control, chattering, fuzzy boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577