Search results for: swarm intelligence.
527 A Survey on Ambient Intelligence in Agricultural Technology
Abstract:
Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208526 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.
Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748525 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization
Authors: S. Sutha, N. Kamaraj
Abstract:
In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.
Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767524 Emotional Intelligence: The Relationship between Self-Regard and Communication Effectiveness
Authors: Hassan Jorfi, Saeid Jorfi, Hashim Fauzy Bin Yaccob, Ishak Mad Shah
Abstract:
In today's complex global environment, emotional intelligence in educational administrations encompasses self-regard that is formed to utilize communication effectiveness. The paper is undertaken to understand the relationship between managers- emotional intelligence especially self-regard and employees to improve communication effectiveness in educational administrations of Iran. Data (N = 145) for this study were collected through questionnaires that participants were managers and employees educational administrations of Iran. The aim of this paper assess the emotional intelligence especially self-regard of managers and employees and its relationship with communication effectiveness in educational administrations of Iran. This paper explained self-regard that has a high relationship with communication especially communication effectiveness. Self-regard plays an important role in communication effectiveness. Individuals with high self-regard tend to have higher emotional intelligence and this action lead to improve communication effectiveness. The result of the paper shows a strong correspondence between self-regard and communication effectiveness in educational administrations.
Keywords: Emotional intelligence, self-regard, communication effectiveness, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3614523 SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment
Authors: Wenqing Fan, Yixuan Cheng, Wei Huang
Abstract:
The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.
Keywords: DIR Triad Model, DVE, vulnerability intelligence, vulnerability recurrence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692522 Peculiarities of Comprehending the Subjective Well- Being by Student with High and Low Level of Emotional Intelligence
Authors: Veronika Pivkina, Alla Kim, Khon Nataliya
Abstract:
In this paper, the actuality of the study, and the role of subjective well-being problem in modern psychology and the comprehending of subjective well-being by current students is defined. The purpose of this research is to educe peculiarities of comprehending of subjective well-being by students with various levels of emotional intelligence. Methods of research are adapted Russian-Language questionnaire of K. Riff 'The scales of psychological well-being'; emotional intelligence questionnaire of D. V. Lusin. The research involved 72 students from different universities and disciplines aged between 18 and 24. Analyzing the results of the studies, it can be concluded that the understanding of happiness in different groups of students with high and low levels of overall emotional intelligence is different, as well as differentiated by gender. Students with a higher level of happiness possess more capacity and higher need to control their emotions, to cause and maintain the desired emotions and control something undesirable.
Keywords: Subjective well-being, emotional intelligence, psychology of comprehending, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682521 The Relationship of Emotional Intelligence, Perceived Stress, Religious Coping with Psychological Distress among Afghan Students
Authors: Mustafa Jahanara
Abstract:
The aim of present research was to study of the relationship between emotional intelligence, perceived stress, positive religious coping with psychological distress to in a sample of undergraduate students in Polytechnic University in Kabul. One hundred and fifty-tow students (102 male, 50 female) were included in this study. All participants completed the Emotional Intelligence Scale (EIS), General Health Questionnaire (GHQ 12), Perceived Stress Scale (PSS-10), and the Brief RCOPE. The results revealed that EI was negatively associated with perceived stress and psychological distress. Also emotional intelligence was positively correlated with positive religious coping. Perceived stress was positive related with psychological distress and negatively correlated with positive religious coping. Eventually positive religious coping was significantly and negatively correlated with psychological distress. However, emotional intelligence and positive religious coping could influence on mental health.Keywords: Emotional intelligence, perceived stress, positive religious coping, psychological distress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906520 Optimal Planning of Ground Grid Based on Particle Swam Algorithm
Authors: Chun-Yao Lee, Yi-Xing Shen
Abstract:
This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.Keywords: Genetic algorithm, particle swarm optimization, grounding grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081519 Constrained Particle Swarm Optimization of Supply Chains
Authors: András Király, Tamás Varga, János Abonyi
Abstract:
Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075518 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159517 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
Authors: Ayad Al-Mahturi, Herman Wahid
Abstract:
This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139516 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter
Authors: H. Abderrezek, M. N. Harmas
Abstract:
DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so called terminal scheme to achieve finite time convergence. Lyapounov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.
Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223515 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101514 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.
Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154513 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368512 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433511 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180510 Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant
Authors: T. Hussein
Abstract:
The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The objective is to damp the local and inter-area modes of oscillations that occur following power system disturbances. The retuned power system stabilizer (PSS1A) can cope with large disturbance at different operating points and has enhanced power system stability.Keywords: Static excitation system, particle swarm optimization (PSO), power system stabilizer (PSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430509 Artificial Intelligence for Software Quality Improvement
Authors: Martín Agüero, Franco Madou, Gabriela Esperón, Daniela López De Luise
Abstract:
This paper presents a software quality support tool, a Java source code evaluator and a code profiler based on computational intelligence techniques. It is Java prototype software developed by AI Group [1] from the Research Laboratories at Universidad de Palermo: an Intelligent Java Analyzer (in Spanish: Analizador Java Inteligente, AJI). It represents a new approach to evaluate and identify inaccurate source code usage and transitively, the software product itself. The aim of this project is to provide the software development industry with a new tool to increase software quality by extending the value of source code metrics through computational intelligence.Keywords: Software metrics, artificial intelligence, neuralnetworks, clustering algorithms, expert systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896508 Application of Soft Computing Methods for Economic Dispatch in Power Systems
Authors: Jagabondhu Hazra, Avinash Sinha
Abstract:
Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimization, ant colony optimization and particle swarm optimization for solving the economic dispatch problem. All the methods are tested on IEEE 30 bus test system. Simulation results are presented to show the comparative performance of these methods.
Keywords: Ant colony optimization, bacteria foraging optimization, economic dispatch, evolutionary algorithm, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481507 Effects of Computer–Based Instructional Designs among Pupils of Different Music Intelligence Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong
Abstract:
The purpose of this study was to investigate the effects of computer–based instructional designs, namely modality and redundancy principles on the attitude and learning of music theory among primary pupils of different Music Intelligence levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was music intelligence. The dependent variables were the post test score. ANOVA was used to determine the significant differences of the pretest scores among the three groups. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variables. High music intelligence pupils performed significantly better than low music intelligence pupils in all the three treatment modes. The AI mode was found to help pupils with low music intelligence significantly more than the TI and AIT modes.
Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Musicintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669506 Testing Visual Abilities of Machines - Visual Intelligence Tests
Authors: Zbigniew Les, Magdalena Les
Abstract:
Intelligence tests are series of tasks designed to measure the capacity to make abstractions, to learn, and to deal with novel situations. Testing of the visual abilities of the shape understanding system (SUS) is performed based on the visual intelligence tests. In this paper the progressive matrices tests are formulated as tasks given to SUS. These tests require good visual problem solving abilities of the human subject. SUS solves these tests by performing complex visual reasoning transforming the visual forms (tests) into the string forms. The experiment proved that the proposed method, which is part of the SUS visual understanding abilities, can solve a test that is very difficult for human subject.
Keywords: Shape understanding, intelligence test, visual concept, visual reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410505 Quantity and Quality Aware Artificial Bee Colony Algorithm for Clustering
Authors: U. Idachaba, F. Z. Wang, A. Qi, N. Helian
Abstract:
Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence technique for clustering. It produces higher quality clusters compared to other population-based algorithms but with poor energy efficiency, cluster quality consistency and typically slower in convergence speed. Inspired by energy saving foraging behavior of natural honey bees this paper presents a Quality and Quantity Aware Artificial Bee Colony (Q2ABC) algorithm to improve quality of cluster identification, energy efficiency and convergence speed of the original ABC. To evaluate the performance of Q2ABC algorithm, experiments were conducted on a suite of ten benchmark UCI datasets. The results demonstrate Q2ABC outperformed ABC and K-means algorithm in the quality of clusters delivered.
Keywords: Artificial bee colony algorithm, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120504 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System
Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein
Abstract:
Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990503 Proactive Approach to Innovation Management
Authors: Andrus Pedai, Igor Astrov
Abstract:
The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning Computer Technology and Large Connected Information Systems, it is reasonable to predict that during current or the next century intelligence and innovation will be separated from the constraints of human driven management. After this happens, humans will be no longer driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale these developments could result in scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.
Keywords: Artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081502 Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem
Authors: Fatemeh Azimi, Razeeh Sadat Aboutalebi, Amir Abbas Najafi
Abstract:
In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.
Keywords: Evolutionary multi-objective optimization makespan, multi-mode, resource constraint, net present value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294501 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm
Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli
Abstract:
Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.
Keywords: Firefly algorithm, metaheuristic algorithm, multilelvel inverter, SHEPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714500 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests
Authors: Rose Shayeghi, Pejman Hosseinioun
Abstract:
The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learnercentered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.Keywords: Multiple intelligence, grammar, ELT, EFL, TIMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420499 PSO-based Possibilistic Portfolio Model with Transaction Costs
Authors: Wei Chen, Cui-you Yao, Yue Qiu
Abstract:
This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534498 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835