Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127966

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925

References:


[1] M. N. V. Ramesh, N. Mohan Rao”, Free vibration analysis of pre-twisted rotating FGM beams”, Int J Mech Mater Des., vol. 9, no. 4, pp. 367–383, Oct. 2013.
[2] A. Safari Kahnaki, S.M. Hosseini, M. Tahani, “Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method”, Int J Mech Mater Des., vol. 7, no. 9, pp. 167-184, Sep. 2011.
[3] A. Allahverdizadeh, M. H. Naei, A. Rastgoo Ghamsari, “The Effects of Large Vibration Amplitudes on the Stresses of Thin Circular Functionally Graded plates”, Int J Mech Mater Des., vol. 3, no. 2, pp. 161-174, Jun. 2006.
[4] S. S. Vel, R.C. Batra”, Three-dimensional exact solution for the vibration of functionally graded rectangular plates”, J Sound Vib., vol. 272, pp. 703-730, Jan. 2004.
[5] R. C. Batra, J. Jin”, Natural frequencies of a functionally graded anisotropic rectangular plate”, J Sound Vib, vol. 282, pp. 509-516, Jan. 2005.
[6] A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian, R. M. N. Jorge”, Natural frequencies of functionally graded plates by a meshless method”, ComposStruct., vol. 75, no. 1-4, pp. 593–600, Sep. 2006.
[7] C. M. C. Roque, A. J. M. Ferreira, R. M. N. Jorge”, A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory”, J Sound Vib., vol. 300, no. 3-5, pp. 1048–1070, March. 2007.
[8] H. Matsunaga”, Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory”, Compos Struct., vol. 82, no. 4, pp. 499–512, Feb. 2008.
[9] Z. Iqbal, N. N. Muhammad, S. Nazra”, Vibration characteristics of FGM circular cylindrical shells using wave propagation approach”, ActaMech., vol. 208, no. 3-4, pp. 237-248, Dec. 2009.
[10] S. M. Hosseini, M. H. Abolbashari”, General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading”, ActaMech., vol. 212, no. 1, pp.1-19, June. 2010.
[11] M. Asgari, M. Akhlaghi, S.M. Hosseini”, Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading”, Acta Mech., vol. 208, no. 3-4, pp. 163-180, Dec. 2009.
[12] M. M. Najafizadeh, M. R. Isvandzibaei”, Vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support”, ActaMech., vol. 191, no. 1, pp. 75-91, June. 2007.
[13] A. Fallah, M. M. Aghdam, M. H. Kargarnovin”, Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method”, Arch. Appl. Mech., vol. 83, no. 2, pp. 177-191, Feb. 2013.
[14] B. S. Aragh, M. H. Yas”, Three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced cylindrical panels resting on Pasternak foundations”, Arch. Appl. Mech. Vol. 81, no. 12, pp. 1759-1779, Dec. 2011.
[15] F. Ebrahimi, A. Rastgoo”, Nonlinear vibration analysis of piezo-thermo-electrically actuated functionally graded circular plates”, Arch. Appl. Mech., vol. 81, no. 3, pp. 361-383, March. 2011.
[16] A. Allahverdizadeh, R. Oftadeh, M. J. Mahjoob, A. Soleimani, H. Tavassoli”, Analyzing the effects of jump phenomenon in nonlinear vibration of thin circular functionally graded plates”, Arch. Appl. Mech., vol. 82, no. 7, pp. 907-918, July. 2012.
[17] S. N. Atluri, T. A. Zhu, “A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics”, ComputMech., vol. 22, no. 2, pp. 117-127, Aug. 1998.
[18] S. N. Atluri, H. G. Kim, J. Y. Cho, “A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods”, ComputMech., vol. 24, no. 5, pp. 348–72, Nov. 1999.
[19] S. N. Atluri, T. Zhu, “Themeshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics”, Comput Mech., vol. 25, no. 2, pp. 169–79, March. 2000.
[20] J. Sladek, P. Stanak, Z. D. Han, V. Sladek, S. N. Atluri”, Applications of the MLPG Method in Engineering & Sciences: A Review”, Comput Model Eng Sci., vol. 92, no. 5, pp. 423-475, 2013.
[21] J. Sladek, V. Sladek, C. H. Zhang”, Stress analysis in anisotropic functionally graded materials by the MLPG method”, Eng Anal Bound Elem., vol. 29, no. 6, pp. 597–609, June. 2005.
[22] L. F. Qian, R. C. Batra, L. M. Chena, “Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkinmethod”, Compos: Part B., vol. 35, no. 6-8, pp. 685–97, Sep-Dec. 2004.
[23] D. F. Gilhooley, R. C. Batra, J. R. Xiao, M. A. McCarthy, J. W. Gillespie Jr”, Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions”, ComposStruct., vol. 80, no. 4, pp. 539–52, Oct. 2007.
[24] A. Rezaei Mojdehi, A. Darvizeh, A. Basti, H. Rajabi”, Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov–Galerkin (MLPG) method”, Eng Anal Bound Elem., vol. 35, no. 11, pp. 1168–1180, Nov. 2011.
[25] S. M. Hosseini, “Application of a hybrid meshless technique for natural frequencies analysis in functionally graded thick hollow cylinder subjected to suddenly thermal loading”, Appl Math Model., vol. 38, no. 2, pp. 425-436, Jan. 2014.
[26] S. Kamarian, M. H. Yas, A. Pourasghar”, Volume Fraction Optimization of Four-Parameter FGM Beams Resting on Elastic Foundation”, Int J Adv Des Manuf Tech., vol. 6, no. 4, pp. 75-82, 2013.
[27] A. Jodaei, M. Jalal, M. H. Yas”, Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN”, Compos Part B., vol. 43, no. 2, pp. 340-353, March. 2012.
[28] J. E. Jam, S. Kamarian, A. Pourasghar, J. Seidi”, Free Vibrations of Three-Parameter Functionally Graded Plates Resting on Pasternak Foundations”, J Solid Mech., vol. 4, no. 1, pp. 59-74.
[29] D. E. Rumelhart, J. L. McClelland, and PDP Research Group”, Parallel distributed processing: Explorations in the microstructure of cognition”, Vol. 1-2, 1986.
[30] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”. Proceedings of IEEE International Conference on Neural Networks, 1995, 1942–1948, Perth, Western Australia.
[31] MATLAB and Neural Network Toolbox Release 2010a, TheMathWorks, Inc., Natick, Massachusetts, United States.