Search results for: Denavit- Hartenberg method Lagrange theorem
8116 Periodic Solutions for a Delayed Population Model on Time Scales
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established.
Keywords: Coincidence degree, continuation theorem, periodic solutions, time scales
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13478115 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.Keywords: p-Laplacian, cone, fixed point theorem, positive solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5928114 Almost Periodic Solution for an Impulsive Neural Networks with Distributed Delays
Authors: Lili Wang
Abstract:
By using the estimation of the Cauchy matrix of linear impulsive differential equations and Banach fixed point theorem as well as Gronwall-Bellman’s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for an impulsive neural networks with distributed delays. An example is presented to illustrate the feasibility and effectiveness of the results.
Keywords: Almost periodic solution, Exponential stability, Neural networks, Impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16158113 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena
Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor
Abstract:
In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.
Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17438112 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays
Abstract:
In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.
Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14158111 New Coordinate System for Countries with Big Territories
Authors: Mohammed Sabri Ali Akresh
Abstract:
The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.
Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18468110 Existence of Solution of Nonlinear Second Order Neutral Stochastic Differential Inclusions with Infinite Delay
Authors: Yong Li
Abstract:
The paper is concerned with the existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay in a Hilbert Space. Sufficient conditions for the existence are obtained by using a fixed point theorem for condensing maps.
Keywords: Mild solution, Convex multivalued map, Neutral stochastic differential inclusions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16048109 Positive Periodic Solutions for a Neutral Impulsive Delay Competition System
Authors: Daiming Wang
Abstract:
In this paper, a neutral impulsive competition system with distributed delays is studied by using Mawhin-s coincidence degree theory and the mean value theorem of differential calculus. Sufficient conditions on the existence of positive periodic solution of the system are obtained.
Keywords: Neutral impulsive delay system, competitive system, coincidence degree, periodic solution, existence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15078108 BEM Formulations Based on Kirchhoffs Hypoyhesis to Perform Linear Bending Analysis of Plates Reinforced by Beams
Authors: Gabriela R. Fernandes, Renato F. Denadai, Guido J. Denipotti
Abstract:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoff's hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a slab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. On these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degree s of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Keywords: Boundary elements, Building floor structures, Platebending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16638107 Permanence and Almost Periodic Solutions to an Epidemic Model with Delay and Feedback Control
Authors: Chenxi Yang, Zhouhong Li
Abstract:
This paper is concerned with an epidemic model with delay. By using the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, Some sufficient conditions which guarantee the permeance and existence of a unique globally attractive positive almost periodic solution of the model are obtain. Finally, an example is employed to illustrate our result.
Keywords: Permanence, Almost periodic solution, Epidemic model, Delay, Feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15508106 CFD Simulations of a Co-current Spray Dryer
Authors: Saad Nahi Saleh
Abstract:
This paper presents the prediction of air flow, humidity and temperature patterns in a co-current pilot plant spray dryer fitted with a pressure nozzle using a three dimensional model. The modelling was done with a Computational Fluid Dynamic package (Fluent 6.3), in which the gas phase is modelled as continuum using the Euler approach and the droplet/ particle phase is modelled by the Discrete Phase model (Lagrange approach).Good agreement was obtained with published experimental data where the CFD simulation correctly predicts a fast downward central flowing core and slow recirculation zones near the walls. In this work, the effects of the air flow pattern on droplets trajectories, residence time distribution of droplets and deposition of the droplets on the wall also were investigated where atomizing of maltodextrin solution was used.Keywords: Spray, CFD, multiphase, drying, droplet, particle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40128105 Almost Periodic Solution for a Food-limited Population Model with Delay and Feedback Control
Authors: Xiaoyan Dou, Yongkun Li
Abstract:
In this paper, we consider a food-limited population model with delay and feedback control. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained.
Keywords: Almost periodic solution, food-limited population, feedback control, permanence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19598104 Multiple Periodic Solutions for a Delayed Predator-prey System on Time Scales
Authors: Xiaoquan Ding, Jianmin Hao, Changwen Liu
Abstract:
This paper is devoted to a delayed periodic predatorprey system with non-monotonic numerical response on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish easily verifiable criteria for the existence of multiple periodic solutions. As corollaries, some applications are listed. In particular, our results improve and generalize some known ones.
Keywords: Predator-prey system, periodic solution, time scale, delay, coincidence degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13708103 Existence and Uniqueness of Periodic Solution for a Discrete-time SIR Epidemic Model with Time Delays and Impulses
Abstract:
In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results.
Keywords: Discrete-time SIR epidemic model, time delay, nonlinear incidence rate, impulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16468102 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics
Authors: H. Loumi-Fergane, A. Belaidi
Abstract:
The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used. In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.
Keywords: Field theories, relativistic mechanics, Lagrangian formalism, multisymplectic geometry, symmetries, Noether theorem, conservation laws.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13658101 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses
Abstract:
In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.
Keywords: Almost periodic solution, exponential stability, neural networks, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143328100 Analysis for a Food Chain Model with Crowley–Martin Functional Response and Time Delay
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
This paper is concerned with a nonautonomous three species food chain model with Crowley–Martin type functional response and time delay. Using the Mawhin-s continuation theorem in theory of degree, sufficient conditions for existence of periodic solutions are obtained.
Keywords: Periodic solutions, coincidence degree, food chain model, Crowley–Martin functional response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19208099 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.
Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10978098 Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems
Authors: M. H. M. Rashid
Abstract:
A Banach space operator T obeys property (gm) if the isolated points of the spectrum σ(T) of T which are eigenvalues are exactly those points λ of the spectrum for which T − λI is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T.Keywords: Weyl’s theorem, Weyl spectrum, polaroid operators, property (gm), property (m).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7778097 Multiple Positive Periodic Solutions to a Periodic Predator-Prey-Chain Model with Harvesting Terms
Authors: Zhouhong Li, Jiming Yang
Abstract:
In this paper, a class of predator-prey-chain model with harvesting terms are studied. By using Mawhin-s continuation theorem of coincidence degree theory and some skills of inequalities, some sufficient conditions are established for the existence of eight positive periodic solutions. Finally, an example is presented to illustrate the feasibility and effectiveness of the results.
Keywords: Positive periodic solutions, Predator-prey-chain model, coincidence degree, harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13068096 Effect of Sand Particle Transportation in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in a pipe bends caused by particles is a major concern in the oil and gas fields and might cause breakdown to production equipment. This work investigates the effect of sand particle transport in an elbow using computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model is employed to calculate the air/solid particle flow in the elbow. Generic erosion model in Ansys fluent and three particle rebound models are used to predict the erosion rate on the 90° elbows. The model result is compared with experimental data from the open literature validating the CFD-based predictions which reveals that due to the sand particles impinging on the wall of the elbow at high velocity, a point on the pipe elbow were observed to have started turning red due to velocity increase and the maximum erosion locations occur at 48°.
Keywords: Erosion, prediction, elbow, computational fluid dynamics, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998095 Four Positive Almost Periodic Solutions to an Impulsive Delayed Plankton Allelopathy System with Multiple Exploit (or Harvesting) Terms
Authors: Fengshuo Zhang, Zhouhong Li
Abstract:
In this paper, we obtain sufficient conditions for the existence of at least four positive almost periodic solutions to an impulsive delayed periodic plankton allelopathy system with multiple exploited (or harvesting) terms. This result is obtained through the use of Mawhins continuation theorem of coincidence degree theory along with some properties relating to inequalities.Keywords: Almost periodic solutions, plankton allelopathy system, coincidence degree, impulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7178094 Correspondence Theorem for Anti L-fuzzy Normal Subgroups
Authors: Jian Tang, Yunfei Yao
Abstract:
In this paper the concept of the cosets of an anti Lfuzzy normal subgroup of a group is given. Furthermore, the group G/A of cosets of an anti L-fuzzy normal subgroup A of a group G is shown to be isomorphic to a factor group of G in a natural way. Finally, we prove that if f : G1 -→ G2 is an epimorphism of groups, then there is a one-to-one order-preserving correspondence between the anti L-fuzzy normal subgroups of G2 and those of G1 which are constant on the kernel of f. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17018093 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8988092 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19188091 Design and Analysis of a Novel 8-DOF Hybrid Manipulator
Authors: H. Mohammadipanah, H. Zohoor
Abstract:
This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20018090 Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation
Authors: Yanling Zhu
Abstract:
In this paper, a higher order nonlinear neutral functional differential equation with distributed delay is studied by using the continuation theorem of coincidence degree theory. Some new results on the existence of periodic solutions are obtained.
Keywords: Neutral functional differential equation, higher order, periodic solution, coincidence degree theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12628089 Periodic Solutions for a Two-prey One-predator System on Time Scales
Authors: Changjin Xu
Abstract:
In this paper, using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales, the existence of periodic solutions for a two-prey one-predator system is studied. Some sufficient conditions for the existence of positive periodic solutions are obtained. The results provide unified existence theorems of periodic solution for the continuous differential equations and discrete difference equations.
Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13698088 Positive Almost Periodic Solutions for Neural Multi-Delay Logarithmic Population Model
Authors: Zhouhong Li
Abstract:
In this paper, by applying Mawhin-s continuation theorem of coincidence degree theory, we study the existence of almost periodic solutions for neural multi-delay logarithmic population model and obtain one sufficient condition for the existence of positive almost periodic solution for the above equation. An example is employed to illustrate our result.
Keywords: Almost periodic solution, Multi-delay, Logarithmic population model, Coincidence degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14358087 Octonionic Reformulation of Vector Analysis
Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi
Abstract:
According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.Keywords: Octonions, Vector Space and seven dimensions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199