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Abstract—This paper is devoted to a delayed periodic predator-
prey system with non-monotonic numerical response on time scales.
With the help of a continuation theorem based on coincidence degree
theory, we establish easily verifiable criteria for the existence of
multiple periodic solutions. As corollaries, some applications are
listed. In particular, our results improve and generalize some known
ones.
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I. INTRODUCTION

In the past decade, many authors have studied the existence

of periodic solutions for population models governed by the

differential and difference equations [1–7].

In [1], Chen studied the following periodic predator-prey

system with type IV functional response:














x′(t) = x(t)

[

r(t) − a(t)x(t − τ1(t)) −
b(t)y(t−τ2(t))
x2(t)

m
+x(t)+n

]

,

y′(t) = y(t)

[

−d(t) + c(t)x(t−τ3(t))
x2(t−τ3(t))

m
+x(t−τ3(t))+n

]

,

(1)

where x(t) and y(t) stand for the population density of prey

and predator at time t, respectively. The function r(t)− a(t)v
is the growth rate of the prey in the absence of the predator.

The function d(t) is the death rate of the predator. The function

(b(t)v)/(v2/m+v+n), called functional response of predator

to prey, describes the change in the rate of exploitation of prey

by a predator as a result of a change in the prey density. The

function (c(t)v)/(v2/m + v + n), called numerical response

of predator to prey, describes the change in reproduction rate

with changing prey density. Using the method of coincidence

degree, the author established sufficient conditions for the

existence of multiple periodic solutions.

In [7], Zhang et al. discussed the discrete analogy of system

(1):










































x(k + 1) = x(k) exp [r(k) − a(k)x(k − τ1(k))

−
b(k)y(k − τ2(k))
x2(k)

m
+ x(k) + n

]

,

y(k + 1) = y(k) exp [−d(k)

+
c(k)x(k − τ3(k))

x2(k−τ3(k))
m

+ x(k − τ3(k)) + n

]

,

(2)
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and established sufficient conditions for the existence of mul-

tiple periodic solutions which is consistent with the ones in

[1].

In [5], Hu et al. considered the following periodic predator-

prey system with general non-monotonic functional response:
{

x′(t) = x(t) [r(t) − a(t)x(t)] − b(t)f(x(t))y(t),

y′(t) = y(t) [−d(t) + c(t)f(x(t − τ))] ,
(3)

and established sufficient conditions for the existence of mul-

tiple periodic solutions.

In [2], Ding and Jiang investigated the following generalized

periodic Gause-type predator-prey system with non-monotonic

numerical response:
{

x′(t) = x(t) [f (t, x(t − τ1(t))) − g(t, x(t))y(t − τ2(t))] ,

y′(t) = y(t) [−d(t) + h(t, x(t − τ3(t)))] ,
(4)

and established sufficient conditions for the existence of mul-

tiple periodic solutions that improve and generalize the ones

for systems (1) and (3) in [1] and [5], respectively.

Recently, in order to unify differential and difference equa-

tions, people have done a lot of research about dynamic

equations on time scales. In fact, continuous and discrete

systems are very important in implementing and applications.

But it is troublesome to study the existence and stability

of periodic solutions for continuous and discrete systems,

respectively. Therefore, it is meaningful to study that on time

scale which can unify the continuous and discrete situations.

For the theory of dynamic equations on time scales, we refer

the reader to [8–10]. For the research on periodic solutions

of dynamic equations on time scales describing population

dynamics, one may consult [11–16], etc.

In this paper, we consider the following periodic predator-

prey system with non-monotonic numerical response on the

time scale T:






u∆
1 (t) = f

(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

eu2(t−τ2(t)),

u∆
2 (t) = −d(t) + h

(

t, eu1(t−τ3(t))
)

.

(5)

T is a periodic time scale which has the subspace topology

inherited from the standard topology on R. The symbol ∆
stands for the delta-derivative. If T = R is the set of all real

numbers, this delta derivative is equal to the usual derivative,

and if T = Z is the set of all integers, this is equal to the

usual forward difference.

Remark 1. Let x(t) = exp[u1(t)], y(t) = exp[u2(t)]. If T =
R, then (5) reduces to (4). If T = Z, then (5) is reformulated

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:12, 2011 

1921International Scholarly and Scientific Research & Innovation 5(12) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
12

, 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/3
26

8.
pd

f



as










x(k + 1) = x(k) exp [f (k, x(t − τ1(k)))

− g(k, x(k)) y(k − τ2(k))] ,

y(k + 1) = y(k) exp[−d(k) + h(k, x(k − τ3(k)))].

(6)

The main purpose of this paper is, by using the coincidence

degree theory developed by Gaines and Mawhin [17], to derive

a set of easily verifiable sufficient conditions for the existence

of multiple periodic solutions of system (5). As corollaries,

some applications are listed. In particular, our results improve

and generalize some known ones.

II. PRELIMINARIES

In this section, we briefly give some elements of the time

scale calculus, recall the continuation theorem from coinci-

dence degree theory, and state an auxiliary result that will be

used in this paper.

First, let us present some foundational definitions and results

from the calculus on time scales so that the paper is self-

contained. For more details, we refer the reader to [8–10].

A time scale T is an arbitrary nonempty closed subset T of

the real numbers R, which inherits the standard topology of

R. Thus, the real numbers R, the integers Z and the natural

numbers N are examples of time scales, while the rational

numbers Q and the open interval (1, 2) are no time scales.

Let ω > 0. Throughout this paper, the time scale T is

assumed to be ω-periodic, i.e., t ∈ T implies t + ω ∈ T. In

particular, the time scale T under consideration is unbounded

above and below.

For t ∈ T, the forward and backward jump operators σ, ρ :
T → T are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t},

respectively.

If σ(t) = t, t is called right-dense (otherwise: right-

scattered), and if ρ(t) = t, then t is called left-dense (oth-

erwise: left-scattered).

A function f : T → R is said to be rd-continuous if it is

continuous at right-dense points in T and its left-sided limits

exist (finite) at left-dense points in T. The set of rd-continuous

functions is denoted by Crd(T).
For f : T → R and t ∈ T we define f∆(t), the delta

derivative of f at t, to be the number (provided it exists) with

the property that, given any ε > 0, there is a neighborhood U
of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) in T such

that
∣

∣[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]
∣

∣ ≤ ε|σ(t) − s|,

for all s ∈ U . f is said to be delta differentiable if its delta

derivative exists for all t ∈ T. The set of functions f : T → R

that are delta differentiable and whose delta derivative are rd-

continuous functions is denoted by C1
rd(T).

A function F : T → R is called a delta antiderivative of

f : T → R provided F∆(t) = f(t), for all t ∈ T. Then, we

define the delta integral by
∫ b

a

f(t)∆t = F (b) − F (a), for all a, b ∈ T.

Lemma 1. Every delta differentiable function is continuous.

Lemma 2. Every rd-continuous function has a delta antideriv-

ative.

Lemma 3. If a, b, c ∈ T, α, β ∈ R and f , g ∈ Crd(T), then

(a)
∫ b

a
[αf(t) + βg(t)]∆t = α

∫ b

a
f(t)∆t + β

∫ b

a
βg(t)∆t;

(b)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t +

∫ b

c
f(t)∆t;

(c) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)∆t ≥ 0;

(d) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then
∣

∣

∣

∫ b

a
f(t)∆t

∣

∣

∣
≤

∫ b

a
g(t)∆t.

To facilitate the discussion below, we now introduce some

notation to be used throughout this paper. Let

κ = min{[0, +∞) ∩ T}, Iω = [κ, κ + ω] ∩ T,

â =
1

ω

∫

Iω

a(t)∆t =
1

ω

∫ κ+ω

κ

a(t)∆t,

Â =
1

ω

∫

Iω

|a(t)|∆t =
1

ω

∫ κ+ω

κ

|a(t)|∆t,

ϕ̃(v) =
1

ω

∫

Iω

ϕ(t, v)∆t =
1

ω

∫ κ+ω

κ

ϕ(t, v)∆t,

where a ∈ Crd(T) is an ω-periodic function, i.e. a(t + ω) =
a(t) for all t ∈ T, ϕ : T×R → R is rd-continuous ω-periodic

in its first argument and continuous in its second argument.

Next, let us recall the continuation theorem in coincidence

degree theory. To do so, we need to introduce the following

notation.

Let X, Y be real Banach spaces, L : DomL ⊂ X → Y be

a linear mapping, and N : X → Y be a continuous mapping.

The mapping L is said to be a Fredholm mapping of index

zero, if dim KerL = codim ImL < +∞ and ImL is closed

in Y .

If L is a Fredholm mapping of index zero, then there exist

continuous projectors P : X → X and Q : Y → Y , such that

ImP = KerL, KerQ = ImL = Im(I −Q). It follows that the

restriction LP of L to DomL ∩ KerP : (I − P )X → ImL is

invertible. Denote the inverse of LP by KP .

The mapping N is said to be L-compact on Ω, if Ω is an

open bounded subset of X , QN(Ω) is bounded and KP (I −
Q)N : Ω → X is compact.

Since ImQ is isomorphic to KerL, there exists an isomor-

phism J : ImQ → KerL.

Here we state the Gaines-Mawhin theorem, which is a main

tool in the proof of our main result.

Lemma 4 (Continuation theorem [17, p.40]). Let Ω ⊂ X be

an open bounded set, L be a Fredholm mapping of index zero

and N be L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL,Lx 6= λNx;

(b) for each x ∈ ∂Ω ∩ KerL,QNx 6= 0;

(c) deg(JQN, Ω ∩ KerL, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω ∩ DomL.

In order to achieve the priori estimation in the case of

dynamic equations on a time scale T, we also require the

following inequality which is proved in [18, Theorem 2.4].

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:12, 2011 

1922International Scholarly and Scientific Research & Innovation 5(12) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
12

, 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/3
26

8.
pd

f



Lemma 5. Let t1, t2 ∈ Iω, and t ∈ T. If ϕ ∈ C1
rd(T) is an

ω-periodic real function, then

ϕ(t) ≤ ϕ(t1) +
1

2

∫ κ+ω

κ

|ϕ∆(t)|∆t

and

ϕ(t) ≥ ϕ(t2) −
1

2

∫ κ+ω

κ

|ϕ∆(t)|∆t.

III. EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS

We are now in a position to state and prove our result on

the existence of multiple periodic solutions of system (5). For

the sake of generality, we make the following fundamental

assumptions for system (5):

(H1) τi(t) : T → R is an ω-periodic continuous function such

that t − τi(t) ∈ T for i = 1, 2, 3, and t ∈ T, .

(H2) d(t) : T → R is an ω-periodic continuous function such

that d̂ > 0.

(H3) f(t, v), g(t, v), h(t, v) : T × R
+ → R are con-

tinuous functions and ω-periodic in t, (∂f/∂v)(t, v),
(∂g/∂v)(t, v) and (∂h/∂v)(t, v) are also continuous

functions.

(H4) There exists a positive constant α such that f̃(v) > 0 for

v ∈ (0, α). There exists a continuous ω-periodic function

r(t) such that r̂ > 0 and f(t, v) ≤ r(t) for t ∈ T, v > 0.

(H5) There exists a positive constant c0 such that 0 <
g(t, v) ≤ c0 for t ∈ T, v > 0.

(H6) h(t, 0) = 0, limv→+∞ h(t, v) = 0. There exists a

positive constant v0 such that (v−v0)(∂h/∂v)(t, v) < 0
for t ∈ T, v > 0 and v 6= v0, and d̂ < supv≥0 h̃(v).

By (H3) and (H6), we have

(v − v0)h̃
′(v) =

1

ω

∫ κ+ω

κ

(v − v0)
∂h

∂v
(t, v)∆t < 0,

lim
v→+∞

h̃(v) = 0,

then h̃(v) is strictly increasing on [0, v0] and strictly decreasing

on [v0,+∞). By this, (H3) and (H6), one can easily see that

equation h̃(v) = d̂ has two distinct positive solutions, namely,

v−, v+. Without loss of generality, we suppose that v− < v+,

then v− < v0 < v+.

Theorem 1. In addition to (H1)–(H6), suppose further that

the following hold:

(H7) v−e(R̂+r̂)ω < v+,

(H8) v+e(R̂+r̂)ω/2 < α.

Then system (5) has at least two ω-periodic solutions.

Proof: In order to apply Lemma 4 to system (5), let

X = Y = {u = (u1(t), u2(t))
T ∈ C(T, R2) :

ui(t + ω) = ui(t), i = 1, 2},

and

‖u‖ = ‖(u1(t), u2(t))
T
‖ = max

t∈Iω

|u1(t)| + max
t∈Iω

|u2(t)|,

then X and Y are Banach spaces with the norm ‖ · ‖. Set

L

[

u1(t)
u2(t)

]

=

[

u∆
1 (t)

u∆
2 (t)

]

,

N

[

u1(t)
u2(t)

]

=

[

f
(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

eu2(t−τ2(t))

−d(t) + h
(

t, eu1(t−τ3(t))
)

]

.

With these notations system (5) can be written in the form

Lu = Nu, u ∈ X.

Obviously, KerL = R
2, ImL = {(u1(t), u2(t))

T ∈ Y :
∫ κ+ω

κ
ui(t)∆t = 0, i = 1, 2} is closed in Y , and dimKerL =

codimImL = 2. Therefore L is a Fredholm mapping of index

zero. Now define two projectors P : X → X and Q : Y → Y
as

P

[

u1(t)
u2(t)

]

= Q

[

u1(t)
u2(t)

]

=

[

û1

û2

]

,

[

u1(t)
u2(t)

]

∈ X = Y,

then P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I − Q).

Furthermore, through an easy computation we find that the

generalized inverse KP of LP has the form

KP : ImL → DomL ∩ KerP,

KP (u) =

∫ t

κ

u(s)∆s −
1

ω

∫ κ+ω

κ

∫ t

κ

u(s)∆s∆t.

Then QN : X → Y and KP (I − Q)N : X → X read as

QNu =
1

ω















∫ κ+ω

κ

[

f
(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

×eu2(t−τ2(t))
]

∆t
∫ κ+ω

κ

[

−d(t) + h
(

t, eu1(t−τ3(t))
)]

∆t















,

KP (I − Q)Nu

=

∫ t

κ

Nu(s)∆s −
1

ω

∫ κ+ω

κ

∫ t

κ

Nu(s)∆s∆t

−
1

ω

(

t − κ −
1

ω

∫ κ+ω

κ

(t − κ)∆t

) ∫ κ+ω

κ

Nu(s)∆s.

Clearly, QN and KP (I − Q)N are continuous. By us-

ing the Arzela-Ascoli theorem, it is not difficult to prove

that KP (I − Q)N(Ω) is compact for any open bounded set

Ω ∈ X . Moreover, QN(Ω) is bounded. Therefore N is L-

compact on Ω with any open bounded set Ω ⊂ X .

In order to apply Lemma 4, we need to find at least two

disjoint open bounded subsets in X . Corresponding to the

operator equation Lu = λNu, λ ∈ (0, 1), we have







u′

1(t) = λ
[

f
(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

eu2(t−τ2(t))
]

,

u′

2(t) = λ
[

−d(t) + h
(

t, eu1(t−τ3(t))
)]

.

(7)

Suppose that (u1(t), u2(t))
T ∈ X is a solution of (7) for a

certain λ ∈ (0, 1). Integrating (7) on both sides from κ to
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κ + ω] leads to

∫ κ+ω

κ

λ
[

f
(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

eu2(t−τ2(t))
]

∆t

=

∫ κ+ω

κ

u′

1(t)∆t = 0,

∫ κ+ω

κ

λ
[

−d(t) + h
(

t, eu1(t−τ3(t))
)]

∆t

=

∫ κ+ω

κ

u′

2(t)∆t = 0.

That is

∫ κ+ω

κ

f
(

t, eu1(t−τ1(t))
)

∆t

=

∫ κ+ω

κ

g
(

t, eu1(t)
)

eu2(t−τ2(t)) ∆t, (8)

∫ κ+ω

κ

h
(

t, eu1(t−τ3(t))
)

∆t =

∫ κ+ω

κ

d(t)∆t = d̂ω. (9)

By (8), we have

r̂ω =

∫ κ+ω

κ

[

r(t) − f
(

t, eu1(t−τ1(t))
)

+ g
(

t, eu1(t)
)

eu2(t−τ2(t))
]

∆t, (10)

It follows from (7), (9), (10), and (H4)–(H6) that

∫ κ+ω

κ

|u′

1(t)|∆t

≤λ

∫ κ+ω

κ

∣

∣

∣
f

(

t, eu1(t−τ1(t))
)

− g
(

t, eu1(t)
)

× eu2(t−τ2(t))
∣

∣

∣
∆t

<

∫ κ+ω

κ

[

r(t) − f
(

t, eu1(t−τ1(t))
)

+ g
(

t, eu1(t)
)

× eu2(t−τ2(t))
]

∆t +

∫ κ+ω

κ

|r(t)|∆t

= (R̂ + r̂)ω, (11)
∫ κ+ω

κ

|u′

2(t)|∆t

≤ λ

∫ κ+ω

κ

∣

∣

∣
−d(t) + h

(

t, eu1(t−τ3(t))
)∣

∣

∣
∆t

<

∫ κ+ω

κ

|d(t)|∆t +

∫ κ+ω

κ

h
(

t, eu1(t−τ3(t))
)

∆t

= (D̂ + d̂)ω. (12)

Since (u1(t), u2(t))
T ∈ X , there exist ξi, ηi ∈ Iω(i = 1, 2)

such that

ui(ξi) = min
t∈Iω

ui(t), ui(ηi) = max
t∈Iω

ui(t), i = 1, 2. (13)

By (9), (13) and the monotonicity of h and h̃, we will

show that u1(ξ1) and u1(η1) can not simultaneously lie

in (−∞, ln v−), (ln v−, ln v+) or (ln v+, +∞). In fact, if

u1(ξ1) ≤ u1(η1) < ln v−, then

d̂ =
1

ω

∫ κ+ω

κ

h
(

t, eu1(t−τ3(t))
)

∆t

≤ h̃
(

eu1(η1)
)

< h̃(v−) = d̂.

This is a contradiction. If ln v+ < u1(ξ1) ≤ u1(η1), then

d̂ =
1

ω

∫ κ+ω

κ

h
(

t, eu1(t−τ3(t))
)

∆t

≤ h̃
(

eu1(ξ1)
)

< h̃(v+) = d̂.

This is also a contradiction. If ln v− < u1(ξ1) ≤ u1(η1) <
ln v+, then

d̂ =
1

ω

∫ κ+ω

κ

h
(

t, eu1(t−τ3(t))
)

∆t

≥ min
{

h̃
(

eu1(ξ1)
)

, h̃
(

eu1(η1)
)}

> h̃(v±) = d̂.

This is also a contradiction. Consequently, the distribution of

u1(ξ1) and u1(η1) only have following two cases.

Case 1. u1(ξ1) ≤ ln v− ≤ u1(η1). By Lemma 5, we obtain

from (11) that for t ∈ Iω

u1(t) ≥ u1(η1) −
1

2

∫ κ+ω

κ

|u′

1(t)|∆t

> ln v− −
R̂ + r̂

2
ω := β1, (14)

u1(t) ≤ u1(ξ1) +
1

2

∫ κ+ω

κ

|u′

1(t)|∆t

< ln v− +
R̂ + r̂

2
ω := β2. (15)

Case 2. u1(ξ1) ≤ ln v+ ≤ u1(η1). By Lemma 5, we also

obtain from (11) that for t ∈ Iω

u1(t) ≥ u1(η1) −
1

2

∫ κ+ω

κ

|u′

1(t)|∆t

> ln v+ −
R̂ + r̂

2
ω := β3, (16)

u1(t) ≤ u1(ξ1) +
1

2

∫ κ+ω

κ

|u′

1(t)|∆t

< ln v+ +
R̂ + r̂

2
ω := β4. (17)

By (H7), we know

β1 < ln v− < β2 < β3 < ln v+ < β4. (18)

Denote

f̃M = max
v∈[eβ1 ,eβ4 ]

f̃(v), f̃m = min
v∈[eβ1 ,eβ4 ]

f̃(v),

gm = min
t∈Iω,v∈[eβ1 ,eβ4 ]

g(t, v).

By (H3), (H5), and (H8), one can easily see that f̃M , f̃m and

gm are positive constants. Noticing that

eβ1 ≤ eu1(t−τ1(t)) ≤ eβ4 ,
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it follows from (8), (13), and (H5) that

f̃m ≤
1

ω

∫ κ+ω

κ

f
(

t, eu1(t−τ1(t))
)

∆t

≤
eu2(η2)

ω

∫ κ+ω

κ

g
(

t, eu1(t)
)

∆t ≤ c0e
u2(η2),

which implies

u2(η2) ≥ ln f̃m − ln c0. (19)

Similarly, we also have

f̃M ≥
1

ω

∫ κ+ω

κ

f
(

t, eu1(t−τ1(t))
)

∆t

≥
eu2(ξ2)

ω

∫ κ+ω

κ

g
(

t, eu1(t)
)

∆t ≥ gmeu2(ξ2),

which implies

u2(ξ2) ≤ ln f̃M − ln gm. (20)

By Lemma 5, we obtain from (12), (19) and (20) that for

t ∈ Iω

u2(t) ≥ u2(η2) −
1

2

∫ κ+ω

κ

|u′

2(t)|∆t

> ln f̃m − ln c0 −
D̂ + d̂

2
ω := β5. (21)

u2(t) ≤ u2(ξ2) +
1

2

∫ κ+ω

κ

|u′

2(t)|∆t

< ln f̃M − ln gm +
D̂ + d̂

2
ω := β6. (22)

In view of (21) and (22) we have

max
t∈Iω

|u2(t)| ≤ max{|β5|, |β6|} := β7. (23)

Clearly, β1, β2, β3, β4 and β7 are independent of λ.

By the monotonicity of h̃, and (H4)–(H8), it is easy to show

that algebraic equations
{

f̃(eu1) − g̃(eu1)eu2 = 0,

− d̂ + h̃(eu1) = 0,
(24)

has two distinct solutions u± = (ln v±, ln f̃(v±)−ln g̃(v±))T.

Choose β0 such that

β0 > max

{∣

∣

∣

∣

∣

ln
f̃(v−)

g̃(v−)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

ln
f̃(v+)

g̃(v+)

∣

∣

∣

∣

∣

}

. (25)

We now take

Ω− = {(u1(t), u2(t))
T ∈ X :

u1(t) ∈ (β1, β2), |u2(t)| < β7 + β0},

Ω+ = {(u1(t), u2(t))
T ∈ X :

u1(t) ∈ (β3, β4), |u2(t)| < β7 + β0}.

Then both Ω− and Ω+ are bounded open subsets of X . It

follows from (18) and (25) that u± ∈ Ω± and Ω− ∩ Ω+ =
∅. With the help of (14)–(18), (23) and (25), it is easy

to see that Ω± satisfies condition (a) in Lemma 4. When

(u1(t), u2(t))
T ∈ ∂Ω± ∩ KerL = ∂Ω± ∩ R

2, (u1(t), u2(t))
T

is a constant vector in R
2. Thus, we have

QN

[

u1

u2

]

=

[

f̃(eu1) − g̃(eu1)eu2

−d̂ + h̃(eu1)

]

6=

[

0
0

]

.

This proves that condition (b) in Lemma 4 is satisfied.

Taking J = I : ImQ → KerL, (u1, u2)
T → (u1, u2)

T, a

direct calculation shows that

deg(JQN, Ω± ∩ KerL, 0) = sign{f̃(v±)h̃′(v±)} = ∓1 6= 0.

Hence, Ω± satisfies all the requirements in Lemma 4. Conse-

quently, system (5) has at least two ω-periodic solutions u∗(t)
and u†(t) in DomL∩Ω− and DomL∩Ω+, respectively. This

completes the proof.

By Remark 1, we know that (4) and (6) have at least two

ω-periodic solutions strictly positive components if (5) has at

least two ω-periodic solutions.

Corollary 1. Suppose that (H1)–(H8) hold, then both (4) and

(6) have at least two ω-periodic solutions with strictly positive

components.

Remark 2. In their Theorem 2.1, Ding and Jiang [2] proved

that (4) has at least two ω-periodic solutions with strictly

positive components if (H1)–(H6),

(H′

7) v−e2(R̂+r̂)ω < v+ and (H′

8) v+e(R̂+r̂)ω < α

hold. Obviously, the conditions (H′

7) and (H′

8) imply (H7) and

(H8), respectively. Hence, our Corollary 1 improves Theorem

2.1 of [2].

IV. APPLICATIONS

In this section, we will list some applications of our above

results.

Example 1. Consider the following system:






u∆
1 (t) = r(t) − a(t)eu1(t−τ1(t)) − b(t)eu2(t−τ2(t))

e2u1(t)/m+eu1(t)+n
,

u∆
2 (t) = −d(t) + c(t)eu1(t−τ3(t))

e2u1(t−τ3(t))/m+eu1(t−τ3(t))+n
,

(26)

which is a special case of (5) by letting

f(t, v) = r(t) − a(t)v, g(t, v) =
b(t)

v2/m + v + n
,

h(t, v) =
c(t)v

v2/m + v + n
,

where r, d, τ1, τ2, τ3 ∈ C(T, R+) are ω-periodic functions,

m and n are positive constants. By Theorem 1, we get the

following result.

Theorem 2. Suppose that

(1) ĉ > max

{

d̂

(

1 + 2

√

n

m

)

, d̂

(

1 + 2

√

n

m
e(R̂+r̂)ω/2

)

−
1

m

√

m2(ĉ − d̂)2 − 4mnd̂2

}

,

(2) 2r̂d̂ > â

[

m(ĉ − d̂) +

√

m2(ĉ − d̂)2 − 4mnd̂2

]

e(R̂+r̂)ω/2

hold, then system (26) has at least two ω-periodic solutions.
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Corollary 2. Suppose that the assumptions (1) and (2) hold,

then both (1) and (2) have at least two ω-periodic solutions

with strictly positive components.

Remark 3. In his Theorem 2.2, Chen [1] proved that system

(1) has at least two ω-periodic solutions with strictly positive

component under the conditions

(1′) ĉ > d̂

(

1 + 2

√

n

m

)

e(R̂+r̂)ω,

(2′) 2r̂d̂ > â
[

m(ĉe(R̂+r̂)ω − d̂)

+

√

m2(ĉe(R̂+r̂)ω − d̂)2 − 4mnd̂2

]

e(R̂+r̂)ω.

Obviously, (1′) implies (1). Notice that

m(ĉe(R̂+r̂)ω − d̂) +

√

m2(ĉe(R̂+r̂)ω − d̂)2 − 4mnd̂2

>

[

m(ĉ − d̂) +

√

m2(ĉ − d̂)2 − 4mnd̂2

]

e(R̂+r̂)ω,

thus (2′) also implies (2). Hence, our Corollary 2 improves the

Theorem 2.2 in [1]. Similarly, our Corollary 2 also improves

Theorem 2.1 of [7].

Example 2. Consider the following system:














u∆
1 (t) =

r(t) − a(t)eu1(t−τ1(t))

n + eu1(t−τ1(t)
−

b(t)eu2(t−τ2(t))

m2 + e2u1(t)
,

u∆
2 (t) = −d(t) +

c(t)eu1(t−τ3(t))

m2 + e2u1(t−τ3(t))
,

(27)

which is a special case of (5) by letting

f(t, v) =
r(t) − a(t)v

n + v
, g(t, v) =

b(t)

m2 + v2
,

h(t, v) =
c(t)v

m2 + v2
,

where all functions and constants are defined as above, the

prey population follows Smith [19] model. By Theorem 1, we

have the following result.

Theorem 3. Suppose that

(1) ĉ > max

{

2md̂e(R̂+r̂)ω/2 −

√

ĉ2 − 4m2d̂2, 2md̂

}

,

(2) 2r̂d̂ > â

(

ĉ +

√

ĉ2 − 4m2d̂2

)

e(R̂+r̂)ω/2,

hold, then system (27) has at least two ω-periodic solutions.

Example 3. Consider the following system:


























u∆
1 (t) = r(t) + a(t)eu1(t−τ1(t)) − e(t)e2u1(t−τ1(t))

−
b(t)eu2(t−τ2(t))

m2 + e2u1(t)
,

u∆
2 (t) = − d(t) +

c(t)eu1(t−τ3(t))

m2 + e2u1(t−τ3(t))
,

(28)

which is a special case of (5) by letting

f(t, v) = r(t) + a(t)v − e(t)v2, g(t, v) =
b(t)

m2 + v2
,

h(t, v) =
c(t)v

m2 + v2
,

where functions r, a, b, c, d, τ1, τ2, τ3, and constant m
are defined as above, e is positive continuous ω-periodic

function, the prey population follows Allee effect [20] model.

By Theorem 1, we have the following result.

Theorem 4. Suppose that

(1) ĉ > max

{

2md̂e(Q̂+q̂)ω/2 −

√

ĉ2 − 4m2d̂2, 2md̂

}

,

(2) 2ρd̂ >

(

ĉ +

√

ĉ2 − 4m2d̂2

)

e(Q̂+q̂)ω/2,

hold, where

ρ =
â +

√
â2 + 4r̂ê

2ê
, q(t) =

a2(t) + 4r(t)e(t)

4e(t)
,

then system (28) has at least two ω-periodic solutions.
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