Search results for: Atomic Absorption Spectrophotometer
444 Heating of High-Density Hydrogen by High- Current Arc Radiation
Authors: A. V. Budin, Ph. G. Rutberg, M. E. Pinchuk, A. A. Bogomaz, V. Yu. Svetova
Abstract:
The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.Keywords: High-density hydrogen heating by high-current electric arc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584443 Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films
Authors: M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki
Abstract:
In this investigation, anatase TiO2 thin films were grown by radio frequency magnetron sputtering on glass substrates at a high sputtering pressure and room temperature. The anatase films were then annealed at 300-600 °C in air for a period of 1 hour. To examine the structure and morphology of the films, X-ray diffraction (XRD) and atomic force microscopy (AFM) methods were used respectively. From X-ray diffraction patterns of the TiO2 films, it was found that the as-deposited film showed some differences compared with the annealed films and the intensities of the peaks of the crystalline phase increased with the increase of annealing temperature. From AFM images, the distinct variations in the morphology of the thin films were also observed. The optical constants were characterized using the transmission spectra of the films obtained by UV-VIS-IR spectrophotometer. Besides, optical thickness of the film deposited at room temperature was calculated and cross-checked by taking a cross-sectional image through SEM. The optical band gaps were evaluated through Tauc model. It was observed that TiO2 films produced at room temperatures exhibited high visible transmittance and transmittance decreased slightly with the increase of annealing temperatures. The films were found to be crystalline having anatase phase. The refractive index of the films was found from 2.31-2.35 in the visible range. The extinction coefficient was nearly zero in the visible range and was found to increase with annealing temperature. The allowed indirect optical band gap of the films was estimated to be in the range from 3.39 to 3.42 eV which showed a small variation. The allowed direct band gap was found to increase from 3.67 to 3.72 eV. The porosity was also found to decrease at a higher annealing temperature making the film compact and dense.Keywords: Titanium dioxide, RF reactive sputtering, Structuralproperties, Surface morphology, Optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3689442 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933441 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites
Authors: Noor Zuhaira Abd Aziz, Rahmah Mohamed, Mohd Muizz Fahimi M.
Abstract:
Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.
Keywords: Hybrid composites, Water absorption, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627440 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method
Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias
Abstract:
To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.
Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533439 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras
Abstract:
In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.
Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229438 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation
Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser
Abstract:
Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results.
Keywords: Crash box, Notch triggering, Energy absorption, FEM simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144437 Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices
Authors: Olubunmi S. Shittu, Olufemi J. Ayodele, Augustus O. A. Ilori, Abidemi O. Filani, Adetola T. Afuye
Abstract:
Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (Igeo) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mCd) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping.Keywords: Contamination factor, enrichment factor, geoaccumulation index, modified degree of contamination, pollution load index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475436 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures
Authors: M. Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: Hollow sphere structure foam, nanocomposite, t/D (thickness, diameter), powder metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398435 Possible Utilization of Cigarette Butts in Light- Weight Fired Clay Bricks
Authors: Aeslina Abdul Kadir, Abbas Mohajerani
Abstract:
Over a million tonnes of cigarette butts (CBs) are produced worldwide annually. These CBs accumulate in the environment due to the poor biodegradability of the cellulose acetate filters and pose a serious environmental risk. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Properties including compressive strength, flexural strength, density, water absorption and thermal conductivity of fired clay bricks are reported and discussed. Furthermore, leaching of heavy metals from the manufactured clay bricks was tested. The results show that the density of fired bricks was reduced by about 8 – 30 %, depending on the percentage of CBs incorporated into the raw materials. The compressive strength of bricks tested was 12.57, 5.22 and 3.00 MPa for 2.5, 5.0 and 10 % CB content respectively. Water absorption and initial rate of absorption values increased as density, and hence porosity, of bricks decreased with increasing CB volume. The leaching test results revealed trace amounts of heavy metals.
Keywords: Cigarette butts, Fired clay bricks, Light bricks, Recycling waste, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4465434 Absorption of Volatile Organic Compounds into Polydimethylsiloxane: Phase Equilibrium Computation at Infinite Dilution
Authors: Edison Muzenda, Corina M Mateescu
Abstract:
Group contribution methods such as the UNIFAC are very useful to researchers and engineers involved in synthesis, feasibility studies, design and optimization of separation processes. They can be applied successfully to predict phase equilibrium and excess properties in the development of chemical and separation processes. The main focus of this work was to investigate the possibility of absorbing selected volatile organic compounds (VOCs) into polydimethylsiloxane (PDMS) using three selected UNIFAC group contribution methods. Absorption followed by subsequent stripping is the predominant available abatement technology of VOCs from flue gases prior to their release into the atmosphere. The original, modified and effective UNIFAC models were used in this work. The thirteen selected VOCs that have been considered in this research are: pentane, hexane, heptanes, trimethylamine, toluene, xylene, cyclohexane, butyl acetate, diethyl acetate, chloroform, acetone, ethyl methyl ketone and isobutyl methyl ketone. The computation was done for solute VOC concentration of 8.55x10-8 which is well in the infinite dilution region. The results obtained in this study compare very well with those published in literature obtained through both measurements and predictions. The phase equilibrium obtained in this study show that PDMS is a good absorbent for the removal of VOCs from contaminated air streams through physical absorption.Keywords: Absorption, Computation, Feasibility studies, Infinite dilution, Volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954433 The Interaction between Hydrogen and Surface Stress in Stainless Steel
Authors: O. Takakuwa, Y. Mano, H. Soyama
Abstract:
This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.
Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3048432 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film
Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali
Abstract:
The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482431 Nuclear Data Evaluation for 217Po
Authors: Sherif S. Nafee, Amir K. Al-Ramady, Salem S. Shaheen
Abstract:
Evaluated nuclear decay data for the 217Po nuclide is presented in the present work. These data include recommended values for the half-life T1/2, α-, β-- and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons and the K-shell to L-shell and L-shell to M-shell and to N-shell conversion electrons ratios K/L, L/M and L/N have been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.
Keywords: Atomic Mass Evaluation, Nuclear Data Evaluation, Total Electron Conversion Electrons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253430 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation
Authors: Gulshan Sachdeva, Ram Bilash
Abstract:
In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy-Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.
Keywords: Exergy analysis, Gouy-Stodola, refrigeration, vapor absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3675429 A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin
Authors: F. Barzegar, M. H. Sheikhi
Abstract:
In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.Keywords: Avalanche Photodiode, Physical Model, MultiquantumWell, Split Step Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522428 Wet Strength Improvement of Pineapple Leaf Paper for Evaporative Cooling Pad
Authors: T. Khampan, N. Thavarungkul, J. Tiansuwan, S. Kamthai
Abstract:
This research aimed to modify pineapple leaf paper (PALP) for using as wet media in the evaporation cooling system by improving wet mechanical property (tensile strength) without compromising water absorption property. Polyamideamineepichorohydrin resin (PAE) and carboxymethylcellulose (CMC) were used to strengthen the paper, and the PAE and CMC ratio of 80:20 showed the optimum wet and dry tensile index values, which were higher than those of the commercial cooling pad (CCP). Compared with CCP, PALP itself and all the PAE/CMC modified PALP possessed better water absorption. The PAE/CMC modified PALP had potential to become a new type of wet media.Keywords: wet strength, evaporative cooling, pineapple leaves, polyamideamine-epichorohydrin, carboxymethylcellulose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159427 Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus
Authors: Dewi Liesnoor Setyowati, Puji Hardati, Tri Marhaeni Puji Astuti, Muhammad Amin
Abstract:
Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality, energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption.
Keywords: Energy consumption, carbon emission absorption, emission reduction, energy literation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842426 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria
Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba
Abstract:
The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of Lead, Chromium, Iron and Zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.
Keywords: AAS, Heavy Metals, Mechanic Workshops, Soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129425 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: Atomic force microscopy, nanochannel, specific down force energy, Y shape, burr, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080424 Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials
Authors: Hakim S. Sultan Aljibori
Abstract:
Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.
Keywords: Crushing behavior, jute fiber, composite tubes andSpecific energy absorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061423 Phage Capsid for Efficient Delivery of Cytotoxic Drugs
Authors: Simona Dostalova, Ana Maria Jimenez Jimenez, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Various nanomaterials can be used as a drug delivery vehicles in nanomedicine, called nanocarriers. They can either be organic or inorganic, synthetic or natural-based. Although synthetic nanocarriers are easier to produce, they can often be toxic for the organism and thus not suitable for use in treatment. From naturalbased nanocarriers, the most commonly used are protein cages or viral capsids. In this work, virus bacteriophage λ was used for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2% maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000×g and 4°C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 μg·mL-1). Free drug molecules were removed by filtration. The encapsulation was verified using the absorbance for doxorubicin and atomic absorption spectrometry for platinum cytostatics. The amount of encapsulated drug linearly increased with the increasing concentration of applied drug with the determination coefficient R2=0.989 for doxorubicin; R2=0.967 for cisplatin; R2=0.989 for carboplatin and R2=0.996 for oxaliplatin. The overall encapsulation efficiency was calculated as 50% for doxorubicin; 8% for cisplatin; 6% for carboplatin and 10% for oxaliplatin.Keywords: Bacteriophage λ, doxorubicin, platinum cytostatics, protein-based nanocarrier, viral capsid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764422 Worker Behavior Interpretation for Flexible Production
Authors: Bastian Hartmann, Christoph Schauer, Norbert Link
Abstract:
This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.Keywords: activity recognition, task modeling, marker-based video-tracking, inertial sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738421 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties
Authors: Yoshio Kurosawa, Takao Yamaguchi
Abstract:
High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.Keywords: Automobile, acoustics, porous material, Transfer Matrix Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877420 Evaluation of Radiation Synthesized β-Glucan Hydrogel Wound Dressing using Rat Models
Authors: Hui J. Gwon, Youn M. Lim, Jong S. Park, Young C. Nho
Abstract:
In this study, hydrogels consisted of polyvinyl alcohol, propylene glycol and β-glucan were developed by radiation technique for wound dressing. The prepared hydrogels were characterized by examining of physical properties such as gel fraction and absorption ratio. The gel fraction and absorption ratio were dependent on the crosslinking density. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound healing comparing to cotton gauze. Therefore, the PVA/propylene glycol/β-glucan blended hydrogels can greatly accelerate the healing without causing irritation.Keywords: β-Glucan, poly(vinyl alcohol), propylene glycol, radiation, wound dressing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4746419 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage
Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy
Abstract:
Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.
Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113418 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface
Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra
Abstract:
Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.
Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487417 Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial
Authors: Srilaxmi Gangula, MahaLakshmi Vinukonda, Neeraj Rao
Abstract:
A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications.
Keywords: Absorber, C-band, meta material, multilayer, X-band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616416 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384415 Temperature-dependent Structural Perturbation of Tuna Myoglobin
Authors: Yoshihiro Ochiai
Abstract:
To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.Keywords: denaturation, myoglobin, stability, tuna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984