WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001121,
	  title     = {Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage},
	  author    = {Faezeh Mosallat and  Eric L. Bibeau and  Tarek El Mekkawy},
	  country	= {},
	  institution	= {},
	  abstract     = {Parabolic solar trough systems have seen limited
deployments in cold northern climates as they are more suitable for
electricity production in southern latitudes. A numerical dynamic
model is developed to simulate troughs installed in cold climates and
validated using a parabolic solar trough facility in Winnipeg. The
model is developed in Simulink and will be utilized to simulate a trigeneration
system for heating, cooling and electricity generation in
remote northern communities. The main objective of this simulation
is to obtain operational data of solar troughs in cold climates and use
the model to determine ways to improve the economics and address
cold weather issues.
In this paper the validated Simulink model is applied to simulate a
solar assisted absorption cooling system along with electricity
generation using Organic Rankine Cycle (ORC) and thermal storage.
A control strategy is employed to distribute the heated oil from solar
collectors among the above three systems considering the
temperature requirements. This modelling provides dynamic
performance results using measured meteorological data recorded
every minute at the solar facility location. The purpose of this
modeling approach is to accurately predict system performance at
each time step considering the solar radiation fluctuations due to
passing clouds. Optimization of the controller in cold temperatures is
another goal of the simulation to for example minimize heat losses in
winter when energy demand is high and solar resources are low.
The solar absorption cooling is modeled to use the generated heat
from the solar trough system and provide cooling in summer for a
greenhouse which is located next to the solar field.
The results of the simulation are presented for a summer day in
Winnipeg which includes comparison of performance parameters of
the absorption cooling and ORC systems at different heat transfer
fluid (HTF) temperatures.
},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {5},
	  year      = {2015},
	  pages     = {1071 - 1075},
	  ee        = {https://publications.waset.org/pdf/10001121},
	  url   	= {https://publications.waset.org/vol/101},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 101, 2015},
	}