Search results for: water distribution networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5757

Search results for: water distribution networks

4347 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: Drinking water, groundwater quality, irrigation water, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
4346 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss

Authors: H. Bevrani, N. Najafi

Abstract:

This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.

Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
4345 Increasing Lifetime of Target Tracking Wireless Sensor Networks

Authors: Khin Thanda Soe

Abstract:

A model to identify the lifetime of target tracking wireless sensor network is proposed. The model is a static clusterbased architecture and aims to provide two factors. First, it is to increase the lifetime of target tracking wireless sensor network. Secondly, it is to enable good localization result with low energy consumption for each sensor in the network. The model consists of heterogeneous sensors and each sensing member node in a cluster uses two operation modes–active mode and sleep mode. The performance results illustrate that the proposed architecture consumes less energy and increases lifetime than centralized and dynamic clustering architectures, for target tracking sensor network.

Keywords: Network lifetime, Target Localization, TargetTracking, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
4344 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: Angle of internal friction, Cone penetrating test, General regression neural network, Soil modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
4343 Optimal Network of Secondary Warehouses for Production-Distribution Inventory Model

Authors: G. M. Arun Prasath, N. Arthi

Abstract:

This work proposed a multi-objective mathematical programming approach to select the appropriate supply network elements. The multi-item multi-objective production-distribution inventory model is formulated with possible constraints under fuzzy environment. The unit cost has taken under fuzzy environment. The inventory model and warehouse location model has combined to formulate the production-distribution inventory model. Warehouse location is important in supply chain network. Particularly, if a company maintains more selling stores it cannot maintain individual secondary warehouse near to each selling store. Hence, maintaining the optimum number of secondary warehouses is important. Hence, the combined mathematical model is formulated to reduce the total expenditure of the organization by arranging the network of minimum number of secondary warehouses. Numerical example has been taken to illustrate the proposed model.

Keywords: Fuzzy inventory model, warehouse location model, triangular fuzzy number, secondary warehouse, LINGO software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
4342 Key Exchange Protocol over Insecure Channel

Authors: Alaa Fahmy

Abstract:

Key management represents a major and the most sensitive part of cryptographic systems. It includes key generation, key distribution, key storage, and key deletion. It is also considered the hardest part of cryptography. Designing secure cryptographic algorithms is hard, and keeping the keys secret is much harder. Cryptanalysts usually attack both symmetric and public key cryptosystems through their key management. We introduce a protocol to exchange cipher keys over insecure communication channel. This protocol is based on public key cryptosystem, especially elliptic curve cryptosystem. Meanwhile, it tests the cipher keys and selects only the good keys and rejects the weak one.

Keywords: Key management and key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
4341 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products

Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li

Abstract:

Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the preprocessed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanism consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the actual average life is available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.

Keywords: Accelerated storage life test, failure mechanism consistency, life distribution, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
4340 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution

Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil

Abstract:

Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.

Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3710
4339 Stabilizing Voltage for Sheens with Motor Loading due to Starting Inductive Motor by using STATCOM

Authors: Mohammad Reza Askari, Mohsen Kazemi, Ali Asghar Baziar

Abstract:

In this treatise we will study the capability of static compensator for reactive power to stabilize sheen voltage with motor loading on power networks system. We also explain the structure and main function of STATCOM and the method to control it using STATCOM transformer current to simultaneously predict after telling about the necessity of FACTS tools to compensate in power networks. Then we study topology and controlling system to stabilize voltage during start of inductive motor. The outcome of stimulat by MATLAB software supports presented controlling idea and system in the treatise.

Keywords: Power network, inductive motor, reactive power, stability of voltage, STATCOM, FACTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
4338 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
4337 Implementation of ADETRAN Language Using Message Passing Interface

Authors: Akiyoshi Wakatani

Abstract:

This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.

Keywords: Iterative methods, array redistribution, translator, distributed memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
4336 The Influence of using Compost Leachate on Soil Reaction

Authors: Ali Gholami, Shahram Ahmadi

Abstract:

In the area where the high quality water is not available, unconventional water sources are used to irrigate. Household leachate is one of the sources which are used in dry and semi dry areas in order to water the barer trees and plants. It meets the plants needs and also has some effects on the soil, but at the same time it might cause some problems as well. This study in order to evaluate the effect of using Compost leachate on the density of soil iron in form of a statistical pattern called ''Split Plot'' by using two main treatments, one subsidiary treatment and three repetitions of the pattern in a three month period. The main N treatments include: irrigation using well water as a blank treatments and the main I treatments include: irrigation using leachate and well water concurrently. Some subsidiary treatments were DI (Drop Irrigation) and SDI (Sub Drop Irrigation). Then in the established plots, 36 biannual pine and cypress shrubs were randomly grown. Two months later the treatment begins. The results revealed that there was a significant variation between the main treatment and the instance regarding pH decline in the soil which was related to the amount of leachate injected into the soil. After some time and using leachate the pH level fell, as much as 0.46 and also increased due to the great amounts of leachate. The underneath drop irrigation ends in better results than sub drop irrigation since it keeps the soil texture fixed.

Keywords: Compost Leachate, Drop irrigation, Soil Reaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
4335 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
4334 Bayesian Belief Networks for Test Driven Development

Authors: Vijayalakshmy Periaswamy S., Kevin McDaid

Abstract:

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
4333 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212
4332 Hydrogen Generation by Accelerating Aluminum Corrosion in Water with Alumina

Authors: J. Skrovan, A. Alfantazi, T. Troczynski

Abstract:

For relatively small particles of aluminum (<60 μm), a measurable percentage of the aluminum (>5%) is observed to corrode before passivation occurs at moderate temperatures (>50oC) in de-ionized water within one hour. Physical contact with alumina powder results in a significant increase in both the rate of corrosion and the extent of corrosion before passivation. Whereas the resulting release of hydrogen gas could be of commercial interest for portable hydrogen supply systems, the fundamental aspects of Al corrosion acceleration in presence of dispersed alumina particles are equally important. This paper investigates the effects of various amounts of alumina on the corrosion rate of aluminum powders in water and the effect of multiple additions of aluminum into a single reactor.

Keywords: Alumina, Aluminum, Corrosion, Hydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
4331 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
4330 Introduction of the Fluid-Structure Coupling into the Force Analysis Technique

Authors: Océane Grosset, Charles Pézerat, Jean-Hugh Thomas, Frédéric Ablitzer

Abstract:

This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented.

Keywords: Fluid-structure coupling, inverse methods, naval, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
4329 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
4328 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: Alumina, alumina distribution, aluminum electrolyzer, cryolite-alumina electrolyte, side ledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
4327 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
4326 Synthesis of Wavelet Filters using Wavelet Neural Networks

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.

Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
4325 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
4324 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research were obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in 2019-2021 was also calculated using a chosen method – a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200
4323 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos

Abstract:

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Keywords: Statistical slope stability analysis, Skew distributions, Probability of failure, Functions of random variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
4322 Entropic Measures of a Probability Sample Space and Exponential Type (α, β) Entropy

Authors: Rajkumar Verma, Bhu Dev Sharma

Abstract:

Entropy is a key measure in studies related to information theory and its many applications. Campbell for the first time recognized that the exponential of the Shannon’s entropy is just the size of the sample space, when distribution is uniform. Here is the idea to study exponentials of Shannon’s and those other entropy generalizations that involve logarithmic function for a probability distribution in general. In this paper, we introduce a measure of sample space, called ‘entropic measure of a sample space’, with respect to the underlying distribution. It is shown in both discrete and continuous cases that this new measure depends on the parameters of the distribution on the sample space - same sample space having different ‘entropic measures’ depending on the distributions defined on it. It was noted that Campbell’s idea applied for R`enyi’s parametric entropy of a given order also. Knowing that parameters play a role in providing suitable choices and extended applications, paper studies parametric entropic measures of sample spaces also. Exponential entropies related to Shannon’s and those generalizations that have logarithmic functions, i.e. are additive have been studies for wider understanding and applications. We propose and study exponential entropies corresponding to non additive entropies of type (α, β), which include Havard and Charvˆat entropy as a special case.

Keywords: Sample space, Probability distributions, Shannon’s entropy, R`enyi’s entropy, Non-additive entropies .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3390
4321 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique

Authors: Aziah Khamis, H. Shareef

Abstract:

The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.

Keywords: Classification, Islanding detection, Neural network, Phase space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
4320 Computational Fluid Dynamics Modeling of Downward Bubbly Flows

Authors: Mahmood Reza Rahimi, Hajir Karimi

Abstract:

Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated and compared against experimental data. CFD results are in good agreement with experimental data.

Keywords: CFD, Bubbly flow, Vertical pipe, Population balance modeling, Gas void fraction, Liquid velocity, Normal turbulent stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
4319 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post short-term exhaustive exercise. The purpose of this study was to understand if 16-20 °C of cold-water immersion would be beneficial in a tropical environment to achieve an optimal recovery in sprint swim performance in comparison to 10-15 °C of water immersion. Two 100 m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25 m swimming pool with full body head out horizontal water immersions of 10-15 °C, 16-20 °C and 29-32 °C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. 10 well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan nationals swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p < 0.05) suggested performance time, BLa and HR had no significant differences between the three conditions after the second sprint, however RPE was significantly different with p = 0.034 between 10-15 °C and 16-20 °C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors however the 16-20 °C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have been possibly fully recovered before sprint 2 invalidating the physiological effect of recovery.

Keywords: Hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
4318 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865