
 

 

  
Abstract—Key management represents a major and the most 

sensitive part of cryptographic systems. It includes key generation, 
key distribution, key storage, and key deletion. It is also considered 
the hardest part of cryptography. Designing secure cryptographic 
algorithms is hard, and keeping the keys secret is much harder. 
Cryptanalysts usually attack both symmetric and public key 
cryptosystems through their key management. We introduce a 
protocol to exchange cipher keys over insecure communication 
channel. This protocol is based on public key cryptosystem, 
especially elliptic curve cryptosystem. Meanwhile, it tests the cipher 
keys and selects only the good keys and rejects the weak one. 
 

Keywords—Key management and key distribution. 

I. INTRODUCTION 
EY management is considered the hardest part of 
cryptography. Designing secure cryptographic algorithms 

is hard, and keeping the keys secret is much harder. 
Cryptanalysts usually attack both symmetric and public key 
cryptosystems through their key management. When people 
choose their own keys, they generally choose poor ones.  
Choosing keys that are relevant to personal information e.g. 
user’s names, initials, and account name. Good keys are 
random bit strings generated by some automatic process. 
Some encryption algorithms have weak keys, specific keys 
that are less secure than other keys. Therefore, it has been 
argued to test keys before use. For example, DES 
cryptosystem has 16 weak keys out of 256 [1].  

  Generating a random key isn’t always possible. 
Sometimes you need to remember your key. Therefore, you 
have to select your key in a way that is easy to remember, but 
difficult to guess. In this paper, we introduce a technique 
based on elliptic curve cryptosystem [2] to exchange the 
cipher keys. The rest of the paper includes the following: 
section 2 presents motivation and overview of elliptic curves. 
Section 3 introduces key exchange protocol, which is based 
on ElGamal cryptosystem [3]. Section 4 concludes the paper.  

II. MOTIVATION AND OVERVIEW 

The study of elliptic curves has led to a solution of the 
congruence problem [4].  Lenstra [5] proposed a technique for 
factoring algorithm using group law that relates the points of 
an elliptic curve. This group law is the basis for Miller’s 
elliptic logarithm [6] adaptation of the Diffie Hellman key 
exchange protocol [7]. The most common equation to define 
the elliptic curves are known as Weierstrass equation [8]. For 
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the prime field GF (P) with P>3, the Weierstrass equation is 
given by “(1)”: 

 
y2 = x3 + ax  + b                    (1) 
 

Where a, and b are integers modulo P for which 4a3 + 27b2 ≠ 
0 (mod P).  The hard problem is “elliptic logarithm” on an 
elliptic curve modulo P: given points G, y, find “a” such that y 
= a G. For the binary finite fields GF (2m), the Weierstrass 
equation is given by “(2)”: 

 
y2 + xy = x3 + ax2 + b                  (2) 
 
Where a, and b are elements of GF(2m) with b ≠ 0. The 

elliptic curve E consists of the solutions (x,y) over GF(q) to 
the defining equation, along with an additional point called the 
point at infinity (denoted O). The points other than O are 
called finite field points. The number of points on E 
(including O) is called the order of the curve E and denoted by 
# E(GF(q)).There are two basic operations of elliptic curves, 
namely addition, and multiplication defined as follows: 

 

A.   Addition Operation 
Define the inverse of the point p =(x,y)  by “(3) to be: 

 
-p = (x, -y) if q =P prime,                       (3) 

 = (x, x+y) if q = 2m. 
 

Then, the sum p + q of the points p and q is the point R, with 
p, q, and –R lie on a curve, with the property p + O = p, and p 
+ (-p) = O, for all points p. To illustrate the addition operation 
on E over Zp, let p=(x1,y1), and q=(x2,y2) are points on E. If 
x2=x1, y2=-y1, then p + q =O. 
Otherwise p + q = (x3,y3), defined by “(4)”, where  
 
x3=λ2-x1-x2, y3=λ(x1-x3)-y1,  
λ =(y2-y1)/(x2-x1)         if p≠q 
   =(3x1

2 +a)/2y1          if p=q 
 

B.   Scalar Multiplication 
Elliptic curve points can be added but not multiplied. 

However, it possible to perform scalar multiplication, which is 
another name for repeated addition of the same point. If n is a 
positive integer and p a point on E, then the scalar 
multiplication is “n p” (adding “p” n times), with the property 
Op = O, and (-n)p = n(-p). Meanwhile Meneze, Vanstone 
(MQV) [3], assume that the points p, q, and –R could not lie 
on E. 
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III. KEY EXCHANGE PROTOCOL  
The protocol uses the ElGamal cryptosystem [9] based on 

elliptic curve as an application. To illustrate how the ElGamal 
cryptosystem works, let P be a prime such that the discrete 
logarithm problem in (Z*P) is infeasible, and let α∈Z*P be a 
primitive element. Let P = Z*P,  ξ = Z*P x Z*P, and define 
κ={(P,α,a,β): β≡αa mod P}. The values P, α, and β are public 
key, and “a” is the private key. For κ=(P,α,a,β), and κ∈Z P-1, 
define the encryption process by “(5)”: 

 
E κ  (x, κ)=(y1, y2)                     (5) 
 
Where, 
y1 =  ακ  mod P, 
y2 = x βκ mod P. 
 
For y1, y2 ∈ Z*P define the decryption process by “(6)”: 
 
Dk (y1, y2) = y2 (y1 a )-1 mod P.                (6) 

 
But it is not our goal to make encryption & decryption of a 

message x. We want to exchange a cipher key over insecure 
channel. Therefore, we consider x is our secret session key to 
be exchanged in a secure manner. To achieve this goal, let 
Alice and Bob are two parties want to exchange their session 
key. Alice and Bob both are agreed upon elliptic curve E, and 
the prime P. The key exchange protocol was implemented by 
using MATLAB 6.5, and was proceeded as follows: 

A.   At Alice Side 
1) Selects the pre-agreement prime number P. 
2) Constructs the elliptic curve E: y2 = x3 + ax + b over ZP, 

where a, b are constants such that: 
4a3 + 27b2 ≠ 0 (mod P). 

3) Computes the curve order #E = N. 
4) Find all field elements (F). 
5) Check for Quadratic Residues and Non- Quadratic 

Residues (QR & NQR). 
6) Find the Rational points that satisfy the field equation             

(R). 
7) Find  the  generator  element (g),  that can generates  all 

field  elements.  This can   be   achieved  by  computing 
(P-1), find the factors of (P-1) “gi ” , and then check for 
g(P-1)/qi ≠ 1, g=2 to P-1. 

8) Find φ (n)= (P-2), which are required to compute λ 
(elliptic curve operations). 

9) Selects the session key to be exchanged k <N-1. 
10) Set x = k in ElGamal cryptosystem and tests it 

(good/weak) just by using the decryption process. If 
you could recover x/ k, then select that key as a good 
key, otherwise reject it (weak one) [10]. On the other 
hand the scheme suggests the nearest good key to be 
used as a session key.  

11) Selects a rational point r ε R such that r = (rx, ry). 
12) Computes the doubling of that point r by k., i.e. find 

another  a  rational   point   r*  =  (r*x,  r*y)  such   that  
r*x =  k rx, and , r*y = k ry 

13) Alice sends r* to Bob. 

   B.   At Bob side 
1) Performs the steps 1:8 as Alice did (off line, and 

waiting for Alice transmission), just loading F, QR, 
NQR, R, and g. 

2) Bob receives r*, and look for it in R. 
3) Counts and Finds the amount of doubling for r* ε R, 

which represents the original session key k. 
 
Fig.1 illustrates an example of the field elements over 

F2579, and F73727 respectively.  

 
  

 
 
 

Fig.1 Field Elements (a) Over F2579 (b) Over F73727 

IV. CONCLUSION 
Designing secure cryptographic algorithms is hard, and 

keeping the keys secret is much harder. Cryptanalysts usually 
attack both symmetric and public key cryptosystems through 
their key management. We introduced a protocol to exchange 
cipher keys over insecure communication channel. This 
protocol is based on public key cryptosystem, especially 
elliptic curve cryptosystem. Meanwhile, it tests the cipher 
keys, selects only the good keys, and rejects the weak one. On 
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the other hand it suggests the nearest good key on E to be used 
as a session key. 
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