Rajkumar Verma and Bhu Dev Sharma
Entropic Measures of a Probability Sample Space and Exponential Type (α, β) Entropy
117 - 122
2014
8
1
International Journal of Physical and Mathematical Sciences
https://publications.waset.org/pdf/9997345
https://publications.waset.org/vol/85
World Academy of Science, Engineering and Technology
Entropy is a key measure in studies related to information theory and its many applications. Campbell for the first time recognized that the exponential of the Shannon&rsquo;s entropy is just the size of the sample space, when distribution is uniform. Here is the idea to study exponentials of Shannon&rsquo;s and those other entropy generalizations that involve logarithmic function for a probability distribution in general. In this paper, we introduce a measure of sample space, called &lsquo;entropic measure of a sample space&rsquo;, with respect to the underlying distribution. It is shown in both discrete and continuous cases that this new measure depends on the parameters of the distribution on the sample space same sample space having different &lsquo;entropic measures&rsquo; depending on the distributions defined on it. It was noted that Campbell&rsquo;s idea applied for Renyi&rsquo;s parametric entropy of a given order also. Knowing that parameters play a role in providing suitable choices and extended applications, paper studies parametric entropic measures of sample spaces also. Exponential entropies related to Shannon&rsquo;s and those generalizations that have logarithmic functions, i.e. are additive have been studies for wider understanding and applications. We propose and study exponential entropies corresponding to non additive entropies of type (&alpha;, &beta;), which include Havard and Charv&circ;at entropy as a special case.
Open Science Index 85, 2014