Search results for: Unsteady flow
891 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer
Authors: M. S. Al-Qurashi
Abstract:
This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382890 Latent Topic Based Medical Data Classification
Authors: Jian-hua Yeh, Shi-yi Kuo
Abstract:
This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.
Keywords: classification, latent topics, outlier adjustment, feature scaling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642889 Numerical Study of MHD Effects on Drop Formation in a T-Shaped Microchannel
Authors: M. Aghajani Haghighi, H. Emdad, K. Jafarpur, A. N. Ziaei
Abstract:
The effect of a uniform magnetic field on the formation of drops of specific size has been investigated numerically in a T-shaped microchannel. Previous researches indicated that the drop sizes of secondary stream decreases, with increasing main stream flow rate and decreasing interfacial tension. In the present study the effect of a uniform magnetic field on the main stream is considered, and it is proposed that by increasing the Hartmann number, the size of the drops of the secondary stream will be decreased.Keywords: Drop formation, Magnetohydrodynamics, Microchannel, Volume-of-Fluid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695888 Computational Investigation of the Combined Effects of Yaw, Rotation and Ground Proximity on the Aerodynamics of an Isolated Wheel
Authors: T. D. Kothalawala, A. Gatto, L. Wrobel
Abstract:
An exploratory computational investigation using RANS & URANS was carried out to understand the aerodynamics around an isolatedsingle rotating wheel with decreasing ground proximity. The wheel was initially modeled in free air conditions, then with decreasing ground proximity and increased yaw angle with rotational speeds. Three speeds of rotation were applied to the wheel so that the effect of different angular velocities can be investigated. In addition to rotation, three different yaw angles were applied to the rotating wheel in order to understand how these two variables combined affect the aerodynamic flow field around the wheel.
Keywords: Aerodynamics, CFD, Ground Proximity, Landing Gear, Wheel, Rotation, Yaw.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365887 FACTS Impact on Grid Stability and Power Markets
Authors: Abdulrahman Alsuhaibani, Martin Macken
Abstract:
FACTS devices have great influence on the grid stability and power markets price. Recently, there is intent to integrate a large scale of renewable energy sources to the power system which in turn pushes the power system to operate closer to the security limits. This paper discusses the power system stability and reliability improvement that could be achieved by using FACTS. There is a comparison between FACTS devices to evaluate their performance for different functions. A case study has also been made about its effect on reducing generation cost and minimizing transmission losses which have good impact on efficient and economic operation of electricity markets.
Keywords: FACTS, grid stability, spot price, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374886 Velocity Distribution in Open Channels: Combination of Log-law and Parabolic-law
Authors: Snehasis Kundu, Koeli Ghoshal
Abstract:
In this paper, based on flume experimental data, the velocity distribution in open channel flows is re-investigated. From the analysis, it is proposed that the wake layer in outer region may be divided into two regions, the relatively weak outer region and the relatively strong outer region. Combining the log law for inner region and the parabolic law for relatively strong outer region, an explicit equation for mean velocity distribution of steady and uniform turbulent flow through straight open channels is proposed and verified with the experimental data. It is found that the sediment concentration has significant effect on velocity distribution in the relatively weak outer region.
Keywords: Inner and outer region, Log law, Parabolic law, Richardson number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6089885 Enhancement of Impingement Heat Transfer on a Flat Plate with Ribs
Authors: M. Kito, M. Takezaki, T. Shakouchi, K. Tsujimoto, T. Ando
Abstract:
Impinging jets are widely used in industrial cooling systems for their high heat transfer characteristics at stagnation points. However, the heat transfer characteristics are low in the downstream direction. In order to improve the heat transfer coefficient further downstream, investigations introducing ribs on jet-cooled flat plates have been conducted. Most studies regarding the heat-transfer enhancement using a rib-roughened wall have dealt with the rib pitch. In this paper, we focused on the rib spacing and demonstrated that the rib spacing must be more than 6 times the nozzle width to improve heat transfer at Reynolds number Re=5.0×103 because it is necessary to have enough space to allow reattachment of flow behind the first rib.Keywords: Forced convection, heat transfer, impinging jet cooling, rib roughened wall
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444884 Energy and Exergy Analysis of Dual Purpose Solar Collector
Authors: I. Jafari, A. Ershadi, E. Najafpour, N. Hedayat
Abstract:
Energy and exergy study of air-water combined solar collector which is called dual purpose solar collector (DPSC) is investigated. The method of ε - NTU is used. Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet temperature are studied. Results are shown that DPSC has better energy and exergy efficiency than single collector. In addition, the triangle passage with water inlet temperature of 60O C has shown better exergy and energy efficiency.
Keywords: Efficiency, Exergy, Irreversibility, Solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632883 Influence of Artificial Roughness on Heat Transfer in the Rotating Flow
Authors: T. Magrakvelidze, N. Bantsadze, N. Lekveishvili, Kh. Lomidze
Abstract:
The results of an experimental study of the process of convective and boiling heat transfer in the vessel with stirrer for smooth and rough ring-shaped pipes are presented. It is established that creation of two-dimensional artificial roughness on the heated surface causes the essential (~100%) intensification of convective heat transfer. In case of boiling the influence of roughness appears on the initial stage of boiling and in case of fully developed nucleate boiling there was no intensification of heat transfer. The similitude equation for calculating convective heat transfer coefficient, which generalizes well experimental data both for the smooth and the rough surfaces is proposed.Keywords: boiling, heat transfer, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867882 The Effect of Air Entraining Agents on Compressive Strength
Authors: Demet Yavuz
Abstract:
Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.
Keywords: Concrete, air-entraining, compressive strength, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755881 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839880 Experimental and Numerical Investigation of Air Ejector with Diffuser with Boundary Layer Suction
Authors: Vaclav Dvorak
Abstract:
The article deals with experimental and numerical investigation of axi-symmetric subsonic air to air ejector with diffuser adapted for boundary layer suction. The diffuser, which is placed behind the mixing chamber of the ejector, has high divergence angle and therefore low efficiency. To increase the efficiency, the diffuser is equipped with slot enabling boundary layer suction. The effect of boundary layer suction on flow in ejector, static pressure distribution on the mixing chamber wall and characteristic were measured and studied numerically. Both diffuser and ejector efficiency were evaluated. The diffuser efficiency was increased, however, the efficiency of ejector itself remained low.Keywords: Air ejector, boundary layer suction, CFD, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2816879 The Method of Evaluation Artery Diameter from Ultrasound Video
Authors: U. Rubins, Z. Marcinkevics, K.Volceka
Abstract:
The cardiovascular system has become the most important subject of clinical research, particularly measurement of arterial blood flow. Therefore correct determination of arterial diameter is crucial. We propose a novel, semi-automatic method for artery lumen detection. The method is based on Gaussian probability function. Usability of our proposed method was assessed by analyzing ultrasound B-mode CFA video sequences acquired from eleven healthy volunteers. The correlation coefficient between the manual and semi-automatic measurement of arterial diameter was 0.996. Our proposed method for detecting artery boundary is novel and accurate enough for the measurement of artery diameter.Keywords: Ultrasound, boundary detection, artery diameter, curve fitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593878 Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air
Authors: Moghadazadeh Zahra, Towfighi Jafar, Mofarahi Masoud
Abstract:
This article is presented an experimental and modeling study of a four-bed pressure swing adsorption process using zeolite13X to provide oxygen-enriched air. The binary mixture N2/O2 (79/21 vol %) was used as a feed stream. The effects of purge/feed ratio (P/F), adsorption pressure, cyclic time and product flow rate on product purity and recovery under nonisothermal condition were studied. The adsorption dynamics of process were determined using a mathematical model incorporated mass and energy balances. A Mathlab code using finite difference method was developed to solve the set of coupled differential-algebraic equations, and the simulation results are agreed well with experimental results.Keywords: Pressure swing adsorption (PSA), Oxygen, Zeolite 13X.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867877 Numerical Investigation of Instabilities in Free Shear Layer Produced by NS-DBD Actuator
Authors: Ilya Popov, Steven Hulshoff
Abstract:
A numerical investigation of the effects of nanosecond barrier discharge on the stability of a two-dimensional free shear layer is performed. The computations are carried out using a compressible Navier-Stokes algorithm coupled with a thermodynamic model of the discharge. The results show that significant increases in the shear layer-s momentum thickness and Reynolds stresses occur due to actuation. Dependence on both frequency and amplitude of actuation are considered, and a comparison is made of the computed growth rates with those predicted by linear stability theory. Amplitude and frequency ranges for the efficient promotion of shear-layer instabilities are identified.Keywords: NS-DBD, plasma, actuator, flow control, instability, shear layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701876 Assessment of ATC with Shunt FACTS Devices
Authors: Ashwani Kumar, Jitender Kumar
Abstract:
In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) Impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.
Keywords: Available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938875 Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications
Authors: K. B. Dermenci, B. Ebin, S.Gürmen
Abstract:
Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.Keywords: Ag/ZnO nanocatalysts, Nanotechnology, USP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881874 Application of an in vitro Alveolus Model in Evaluating the Alveolar Response to Pressure- Induced Injury
Authors: Divya D. Nalayanda, William B. Fulton, Tza-Huei Wang, Fizan Abdullah
Abstract:
In an effort to understand the preliminary effects of aerodynamic stress on alveolar epithelial cells, we developed a multifluidic cell culture platform capable of supporting alveolar cultures at an air-liquid interface under constant air flow and exposure to varying pressure stimuli on the apical side while providing nourishment on the basolateral plane. Our current study involved utilizing the platform to study the effect of basement membrane coating and addition of dexamethasone on cellular response to pressure in A549 and H441 alveolar epithelial cells.
Keywords: Aerodynamic stress, Air-liquid interface, Alveolar, Dexamethasone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491873 HOPF Bifurcation of a Predator-prey Model with Time Delay and Habitat Complexity
Authors: Li Hongwei
Abstract:
In this paper, a predator-prey model with time delay and habitat complexity is investigated. By analyzing the characteristic equations, the local stability of each feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By choosing the sum of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main theoretical results.
Keywords: Predator-prey system, delay, habitat complexity, HOPF bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870872 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids
Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani
Abstract:
Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.Keywords: Critical particle size, nanofluid, model, and thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049871 Multivariable Predictive PID Control for Quadruple Tank
Authors: Qamar Saeed, Vali Uddin, Reza Katebi
Abstract:
In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design.Keywords: Proportional-integral-derivative Control, GeneralizedPredictive Control, Predictive PID Control, Multivariable Systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277870 Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor
Authors: Vanessa Romanovicz, Beatriz A. Berns, Stephen D. Carpenter, Deyse Carpenter
Abstract:
This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET= 3.691m,/g.
Keywords: Carbon nanotubes, sugar cane, fuel cell, catalyst support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291869 Hole Configuration Effect on Turbine Blade Cooling
Authors: A.Hasanpour, M. Farhadi, H.R. Ashorynejad
Abstract:
In this paper a numerical technique is used to predict the metal temperature of a gas turbine vane. The Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream turbine section to avoid thermal failure. This study is performed the solution of external flow, internal convection, and conduction within the metal vane. Also the trade-off between the cooling performances in four different hole shapes and configurations is performed. At first one of the commonly used cooling hole geometry is investigated; cylindrical holes and then two other configurations are simulated. The average temperature magnitude in mid-plan section of each configuration is obtained and finally the lower temperature value is selected such as best arrangement.Keywords: Forced Convection, Gas Turbine Blade, Hole Configuration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598868 Generalized Stokes’ Problems for an Incompressible Couple Stress Fluid
Authors: M.Devakar, T.K.V.Iyengar
Abstract:
In this paper, we investigate the generalized Stokes’ problems for an incompressible couple stress fluid. Analytical solution of the governing equations is obtained in Laplace transform domain for each problem. A standard numerical inversion technique is used to invert the Laplace transform of the velocity in each case. The effect of various material parameters on velocity is discussed and the results are presented through graphs. It is observed that, the results are in tune with the observation of V.K.Stokes in connection with the variation of velocity in the flow between two parallel plates when the top one is moving with constant velocity and the bottom one is at rest.
Keywords: Couple stress fluid, Generalized Stokes’ problems, Laplace transform, Numerical inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3238867 Comparison of SVC and STATCOM in Static Voltage Stability Margin Enhancement
Authors: Mehrdad Ahmadi Kamarposhti, Mostafa Alinezhad
Abstract:
One of the major causes of voltage instability is the reactive power limit of the system. Improving the system's reactive power handling capacity via Flexible AC transmission System (FACTS) devices is a remedy for prevention of voltage instability and hence voltage collapse. In this paper, the effects of SVC and STATCOM in Static Voltage Stability Margin Enhancement will be studied. AC and DC representations of SVC and STATCOM are used in the continuation power flow process in static voltage stability study. The IEEE-14 bus system is simulated to test the increasing loadability. It is found that these controllers significantly increase the loadability margin of power systems.
Keywords: SVC, STATCOM, Voltage Collapse, Maximum Loading Point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6374866 Corporate Knowledge Communication and Knowledge Communication Difficulties
Authors: H. Buluthan Cetintas, M. Nejat Ozupek
Abstract:
Communication is an important factor and a prop in directing corporate activities efficiently, in ensuring the flow of knowledge which is necessary for the continuity of the institution, in creating a common language in the institution, in transferring corporate culture and ultimately in corporate success. The idea of transmitting the knowledge among the workers in a healthy manner has revived knowledge communication. Knowledge communication can be defined as the act of mutual creation and communication of intuitions, assessments, experiences and capabilities, as long as maintained effectively, can provide advantages such as corporate continuity, access to corporate objectives and making true administrative decisions. Although the benefits of the knowledge communication to corporations are known, and the necessary worth and care is given, some hardships may arise which makes it difficult or even block it. In this article, difficulties that prevent knowledge communication will be discussed and solutions will be proposed.Keywords: Corporate knowledge communication, knowledge communication, knowledge communication barriers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436865 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.
Keywords: Data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516864 Design and Manufacturing of a Propeller for Axial-Flow Fan
Authors: D. Almazo, M. Toledo, C. Rodríguez
Abstract:
This work presents a methodology for the design and manufacture of propellers oriented to the experimental verification of theoretical results based on the combined model. The design process begins by using algorithms in Matlab which output data contain the coordinates of the points that define the blade airfoils, in this case the NACA 6512 airfoil was used. The modeling for the propeller blade was made in NX7, through the imported files in Matlab and with the help of surfaces. Later, the hub and the clamps were also modeled. Finally, NX 7 also made possible to create post-processed files to the required machine. It is possible to find the block of numbers with G & M codes about the type of driver on the machine. The file extension is .ptp. These files made possible to manufacture the blade, and the hub of the propeller.Keywords: Airfoil, CAM, manufacturing, mathematical algorithm, numeric control, propeller design, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3871863 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.
Keywords: ECAP, mechanical design, numerical methods, SPD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786862 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System
Authors: Nelson K. Lujara
Abstract:
The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.
Keywords: Photovoltaic, water pumping, losses, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748