Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30999
An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani


Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.

Keywords: Nanofluid, model, Critical particle size, and thermal conductivity

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714


[1] J. C. Maxwell, "A Treatise on Electricity and Magnetism, 2nd Ed., Oxford Univ. Press, Cambridge, UK 1904, p. 435.
[2] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles," Int. J. Heat Mass Tran., 46(14), , 2003, pp. 2665-2672.
[3] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, "Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),", Int. J. Heat Mass Tran., 45(4), 2002, pp. 855-863.
[4] C.H. Chon, K.D. Kihm, S.P. Lee, and S.U.S. Choi, "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement", Appl. Phys., 2005.
[5] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, NetsuBussei (Japan) 7, 227, 1993.
[6] H. Xie, M. Fujii, , and X. Zhang, "Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture", Int. J. Heat Mass Tran., 48(14), 2005, pp. 2926-2932.
[7] W. Yu, and S. U. S. Choi, "The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model", J. Nanopart. Res., 5(1), 2003 pp. 167-171.
[8] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles", Int. J. Heat Mass Tran., 46(14), 2003, pp. 2665-2672.
[9] J.Koo and C. Kleinstreuer, "A New Thermal Conductivity Model for Nanofluids", J. Nanopart. Res., 6(6), 2004, pp. 577-588.
[10] J. Xu, B. Yu, M. Zou, and P. Xu, "A New Model for Heat Conduction of Nanofluids Based on Fractal Distributions of Nanoparticles", J. Phys. D: Appl. Phys., 39(20), 2006, pp. 4486-4490.
[11] Y. Xuan Q. Li, and W. Hu, "Aggregation Structure and Thermal Conductivity of Nanofluids" AIChE Journal, 49(4), 2003, pp. 1038- 1043.
[12] b-X. Wang, W.-Y. Sheng, and . X.-F. Peng, "A Novel Statistical Clustering Model for Predicting Thermal Conductivity of Nanofluid", Int. Thermophys, 30, 2009, pp. 1992-1998.
[13] H. Hezaveh1, M. Keshavarz Moraveji, "Modeling Effective Thermal Conductivity of Al2o3 Nanoparticles in Water and Ethylene Glycol Based on Shape Factor", Int. J. of Chem. Eng. and Appl., Vol. 2, No. 1, 2011, ISSN: 2010-0221
[14] X. Zhang, H. Gu, and M. Fujii, Int. J. Thermophys. 27, 2006, p 569.
[15] X. Wang, X. Xu, and S. U. S Choi, ÔÇÿÔÇÿThermal Conductivity ofNanoparticle-Fluid Mixture-- J. Thermophys. Heat Transfer, 13(4), 1999, pp. 474-480
[16] Y. Xuan and Q. Li, "Heat Transfer Enhancement of Nanofluids", Int.J. Heat Fluid Flow, 1(21), 2000, pp. 58-64.
[17] A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, and S. Tavman, "Thermal Conductivity and Viscosity Measurements of Water- Based TiO2 Nanofluids"
[18] S.M.S. Murshed, K.C. Leong, and C. Yang, Int. J. Therm. Sci. 44,, 2005, p 367.
[19] D.-W. Oh, A. Jain, J.K.E.Goodson, and J.S. Lee, " Thermal Conductivity Measurement and Sedimeentation detection of Al2O3 Nanofluids by Using the 3W Method", Int. J. Heat Fluid Flow, 29, 2008, p 1456.
[20] B.S.A. Shin, "Minimum Quantity Lubrication (MQL) Grinding Using Nanofluid", The University of Mishigan, resdarch/file/advmach_files/mqlm
[21] A. R. Moghadassi, S.M. Hosseini, D. Henneke, and A. Elkamel, "A Model of Nanofluids Effective Thermal Conductivity Based on Dimensionless Groups", J. of Thermal Analysis and Calorimetry, Vol. 96, 2009, pp 81-84.