**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30174

##### An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

**Authors:**
K. Abbaspoursani,
M. Allahyari,
M. Rahmani

**Abstract:**

**Keywords:**
Critical particle size,
nanofluid,
model,
and thermal
conductivity.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1080532

**References:**

[1] J. C. Maxwell, "A Treatise on Electricity and Magnetism, 2nd Ed., Oxford Univ. Press, Cambridge, UK 1904, p. 435.

[2] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles," Int. J. Heat Mass Tran., 46(14), , 2003, pp. 2665-2672.

[3] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, "Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),", Int. J. Heat Mass Tran., 45(4), 2002, pp. 855-863.

[4] C.H. Chon, K.D. Kihm, S.P. Lee, and S.U.S. Choi, "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement", Appl. Phys., 2005.

[5] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, NetsuBussei (Japan) 7, 227, 1993.

[6] H. Xie, M. Fujii, , and X. Zhang, "Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture", Int. J. Heat Mass Tran., 48(14), 2005, pp. 2926-2932.

[7] W. Yu, and S. U. S. Choi, "The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model", J. Nanopart. Res., 5(1), 2003 pp. 167-171.

[8] B. Wang, L. Zhou, and X. Peng, "A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles", Int. J. Heat Mass Tran., 46(14), 2003, pp. 2665-2672.

[9] J.Koo and C. Kleinstreuer, "A New Thermal Conductivity Model for Nanofluids", J. Nanopart. Res., 6(6), 2004, pp. 577-588.

[10] J. Xu, B. Yu, M. Zou, and P. Xu, "A New Model for Heat Conduction of Nanofluids Based on Fractal Distributions of Nanoparticles", J. Phys. D: Appl. Phys., 39(20), 2006, pp. 4486-4490.

[11] Y. Xuan Q. Li, and W. Hu, "Aggregation Structure and Thermal Conductivity of Nanofluids" AIChE Journal, 49(4), 2003, pp. 1038- 1043.

[12] b-X. Wang, W.-Y. Sheng, and . X.-F. Peng, "A Novel Statistical Clustering Model for Predicting Thermal Conductivity of Nanofluid", Int. Thermophys, 30, 2009, pp. 1992-1998.

[13] H. Hezaveh1, M. Keshavarz Moraveji, "Modeling Effective Thermal Conductivity of Al2o3 Nanoparticles in Water and Ethylene Glycol Based on Shape Factor", Int. J. of Chem. Eng. and Appl., Vol. 2, No. 1, 2011, ISSN: 2010-0221

[14] X. Zhang, H. Gu, and M. Fujii, Int. J. Thermophys. 27, 2006, p 569.

[15] X. Wang, X. Xu, and S. U. S Choi, ÔÇÿÔÇÿThermal Conductivity ofNanoparticle-Fluid Mixture-- J. Thermophys. Heat Transfer, 13(4), 1999, pp. 474-480

[16] Y. Xuan and Q. Li, "Heat Transfer Enhancement of Nanofluids", Int.J. Heat Fluid Flow, 1(21), 2000, pp. 58-64.

[17] A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, and S. Tavman, "Thermal Conductivity and Viscosity Measurements of Water- Based TiO2 Nanofluids"

[18] S.M.S. Murshed, K.C. Leong, and C. Yang, Int. J. Therm. Sci. 44,, 2005, p 367.

[19] D.-W. Oh, A. Jain, J.K.E.Goodson, and J.S. Lee, " Thermal Conductivity Measurement and Sedimeentation detection of Al2O3 Nanofluids by Using the 3W Method", Int. J. Heat Fluid Flow, 29, 2008, p 1456.

[20] B.S.A. Shin, "Minimum Quantity Lubrication (MQL) Grinding Using Nanofluid", The University of Mishigan, http://wumrf.engin.umich.edu/ resdarch/file/advmach_files/mqlm

[21] A. R. Moghadassi, S.M. Hosseini, D. Henneke, and A. Elkamel, "A Model of Nanofluids Effective Thermal Conductivity Based on Dimensionless Groups", J. of Thermal Analysis and Calorimetry, Vol. 96, 2009, pp 81-84.