Search results for: Mitigating techniques.
1142 Authentication of Physical Objects with Dot-Based 2D Code
Authors: Michał Glet, Kamil Kaczyński
Abstract:
Counterfeit goods and documents are a global problem, which needs more and more sophisticated methods of resolving it. Existing techniques using watermarking or embedding symbols on objects are not suitable for all use cases. To address those special needs, we created complete system allowing authentication of paper documents and physical objects with flat surface. Objects are marked using orientation independent and resistant to camera noise 2D graphic codes, named DotAuth. Based on the identifier stored in 2D code, the system is able to perform basic authentication and allows to conduct more sophisticated analysis methods, e.g., relying on augmented reality and physical properties of the object. In this paper, we present the complete architecture, algorithms and applications of the proposed system. Results of the features comparison of the proposed solution and other products are presented as well, pointing to the existence of many advantages that increase usability and efficiency in the means of protecting physical objects.
Keywords: Authentication, paper documents, security, anti-forgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6351141 Classification and Resolving Urban Problems by Means of Fuzzy Approach
Authors: F. Habib, A. Shokoohi
Abstract:
Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.
Keywords: Classification, complexity, Fuzzy theory, urban problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21131140 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture
Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis
Abstract:
During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.
Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11831139 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
Authors: T. Vigneswari, M. A. Maluk Mohamed
Abstract:
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.
Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31041138 Application of GIS and Statistical Multivariate Techniques for Estimation of Soil Erosion and Sediment Yield
Authors: Masoud Nasri, Ali Gholami, Ali Najafi
Abstract:
In recent years, most of the regions in the world are exposed to degradation and erosion caused by increasing population and over use of land resources. The understanding of the most important factors on soil erosion and sediment yield are the main keys for decision making and planning. In this study, the sediment yield and soil erosion were estimated and the priority of different soil erosion factors used in the MPSIAC method of soil erosion estimation is evaluated in AliAbad watershed in southwest of Isfahan Province, Iran. Different information layers of the parameters were created using a GIS technique. Then, a multivariate procedure was applied to estimate sediment yield and to find the most important factors of soil erosion in the model. The results showed that land use, geology, land and soil cover are the most important factors describing the soil erosion estimated by MPSIAC model.Keywords: land degradation, Soil erosion, Sediment yield, Aliabad, GIS technique, Land use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16911137 Software Effort Estimation Using Soft Computing Techniques
Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar
Abstract:
Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.
Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20761136 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.
Keywords: Underwater Concrete, Rebound Hardness, Schmidt hammer, Ultrasonic Pulse Velocity, Ultrasonic Sensor, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36641135 Investigating Feed Mix Problem Approaches: An Overview and Potential Solution
Authors: Rosshairy Abd Rahman, Chooi-Leng Ang, Razamin Ramli
Abstract:
Feed is one of the factors which play an important role in determining a successful development of an aquaculture industry. It is always critical to produce the best aquaculture diet at a minimum cost in order to trim down the operational cost and gain more profit. However, the feed mix problem becomes increasingly difficult since many issues need to be considered simultaneously. Thus, the purpose of this paper is to review the current techniques used by nutritionist and researchers to tackle the issues. Additionally, this paper introduce an enhance algorithm which is deemed suitable to deal with all the issues arise. The proposed technique refers to Hybrid Genetic Algorithm which is expected to obtain the minimum cost diet for farmed animal, while satisfying nutritional requirements. Hybrid GA technique with artificial bee algorithm is expected to reduce the penalty function and provide a better solution for the feed mix problem.
Keywords: Artificial bee algorithm, feed mix problem, hybrid genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32101134 Designing Transcutaneous Inductive Powering Links for Implanted Micro-System Device
Authors: Saad Mutashar Abbas, M. A. Hannan, S. A. Samad, A. Hussain
Abstract:
This paper presented a proposed design for transcutaneous inductive powering links. The design used to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 13.56 MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 13 % and the modulation rate 7.3% with data rate 1 Mbit/s assuming Tbit=1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation the electronic workbench MULISIM 11 has been used. The novel circular plane (pancake) coils was simulated using ANSOFT- HFss software.Keywords: Implanted devices, ASK techniques, Class-E power amplifier, Inductive powering and low-frequency ISM band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26021133 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study
Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák
Abstract:
Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.
Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23061132 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291131 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification
Authors: Sam, Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune
Abstract:
This paper presents a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Notably, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.
Keywords: Cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, zkpor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601130 Cloud Computing Security for Multi-Cloud Service Providers: Controls and Techniques in our Modern Threat Landscape
Authors: Sandesh Achar
Abstract:
Cloud computing security is a broad term that covers a variety of security concerns for organizations that use cloud services. Multi-cloud service providers must consider several factors when addressing security for their customers, including identity and access management, data at rest and in transit, egress and ingress traffic control, vulnerability and threat management, and auditing. This paper explores each of these aspects of cloud security in detail and provides recommendations for best practices for multi-cloud service providers. It also discusses the challenges inherent in securing a multi-cloud environment and offers solutions for overcoming these challenges. By the end of this paper, readers should have a good understanding of the various security concerns associated with multi-cloud environments in the context of today’s modern cyber threats and how to address them.
Keywords: Multi-cloud service, SOC, system organization control, data loss prevention, DLP, identity and access management, IAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7061129 Arabic Word Semantic Similarity
Authors: Faaza A, Almarsoomi, James D, O'Shea, Zuhair A, Bandar, Keeley A, Crockett
Abstract:
This paper is concerned with the production of an Arabic word semantic similarity benchmark dataset. It is the first of its kind for Arabic which was particularly developed to assess the accuracy of word semantic similarity measurements. Semantic similarity is an essential component to numerous applications in fields such as natural language processing, artificial intelligence, linguistics, and psychology. Most of the reported work has been done for English. To the best of our knowledge, there is no word similarity measure developed specifically for Arabic. In this paper, an Arabic benchmark dataset of 70 word pairs is presented. New methods and best possible available techniques have been used in this study to produce the Arabic dataset. This includes selecting and creating materials, collecting human ratings from a representative sample of participants, and calculating the overall ratings. This dataset will make a substantial contribution to future work in the field of Arabic WSS and hopefully it will be considered as a reference basis from which to evaluate and compare different methodologies in the field.
Keywords: Arabic categories, benchmark dataset, semantic similarity, word pair, stimulus Arabic words
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31061128 Mycoflora of Activated Sludge with MBRs in Berlin, Germany
Authors: Mohamed F. Awad, M. Kraume
Abstract:
Thirty six samples from each (aerobic and anoxic) activated sludge were collected from two wastewater treatment plants with MBRs in Berlin, Germany. The samples were prepared for count and definition of fungal isolates; these isolates were purified by conventional techniques and identified by microscopic examination. Sixty tow species belonging to 28 genera were isolated from activated sludge samples under aerobic conditions (28 genera and 58 species) and anoxic conditions (26 genera and 52 species). The obtained data show that, Aspergillus was found at 94.4% followed by Penicillium 61.1 %, Fusarium (61.1 %), Trichoderma (44.4 %) and Geotrichum candidum (41.6 %) species were the most prevalent in all activated sludge samples. The study confirmed that fungi can thrive in activated sludge and sporulation, but isolated in different numbers depending on the effect of aeration system. Some fungal species in our study are saprophytic, and other a pathogenic to plants and animals.Keywords: Activated sludge, membrane bioreactors, aerobic, anoxic conditions, fungi
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051127 Learning User Keystroke Patterns for Authentication
Authors: Ying Zhao
Abstract:
Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28221126 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic
Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin
Abstract:
In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23291125 The Fuel Consumption and Non Linear Model Metropolitan and Large City Transportation System
Authors: Mudjiastuti Handajani
Abstract:
The national economy development affects the vehicle ownership which ultimately increases fuel consumption. The rise of the vehicle ownership is dominated by the increasing number of motorcycles. This research aims to analyze and identify the characteristics of fuel consumption, the city transportation system, and to analyze the relationship and the effect of the city transportation system on the fuel consumption. A multivariable analysis is used in this study. The data analysis techniques include: a Multivariate Multivariable Analysis by using the R software. More than 84% of fuel on Java is consumed in metropolitan and large cities. The city transportation system variables that strongly effect the fuel consumption are population, public vehicles, private vehicles and private bus. This method can be developed to control the fuel consumption by considering the urban transport system and city tipology. The effect can reducing subsidy on the fuel consumption, increasing state economic.Keywords: city, consumption, fuel, transportation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521124 Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval
Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed
Abstract:
In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11891123 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30531122 Hybrid Genetic-Simulated Annealing Approach for Fractal Image Compression
Authors: Y.Chakrapani, K.Soundera Rajan
Abstract:
In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature convergence of the strings. One of the image compression techniques in the spatial domain is Fractal Image Compression but the main drawback of FIC is that it involves more computational time due to global search. In order to improve the computational time along with acceptable quality of the decoded image, HGASA technique has been proposed. Experimental results show that the proposed HGASA is a better method than GA in terms of PSNR for Fractal image Compression.Keywords: Fractal Image Compression, Genetic Algorithm, HGASA, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651121 Study on Changes of Land Use impacting the Process of Urbanization, by Using Landsat Data in African Regions: A Case Study in Kigali, Rwanda
Authors: Delphine Mukaneza, Lin Qiao, Wang Pengxin, Li Yan, Chen Yingyi
Abstract:
Human activities on land use make the land-cover gradually change or transit. In this study, we examined the use of Landsat TM data to detect the land use change of Kigali between 1987 and 2009 using remote sensing techniques and analysis of data using ENVI and ArcGIS, a GIS software. Six different categories of land use were distinguished: bare soil, built up land, wetland, water, vegetation, and others. With remote sensing techniques, we analyzed land use data in 1987, 1999 and 2009, changed areas were found and a dynamic situation of land use in Kigali city was found during the 22 years studied. According to relevant Landsat data, the research focused on land use change in accordance with the role of remote sensing in the process of urbanization. The result of the work has shown the rapid increase of built up land between 1987 and 1999 and a big decrease of vegetation caused by the rebuild of the city after the 1994 genocide, while in the period of 1999 to 2009 there was a reduction in built up land and vegetation, after the authority of Kigali city established, a Master Plan where all constructions which were not in the range of the master Plan were destroyed. Rwanda's capital, Kigali City, through the expansion of the urban area, it is increasing the internal employment rate and attracts business investors and the service sector to improve their economy, which will increase the population growth and provide a better life. The overall planning of the city of Kigali considers the environment, land use, infrastructure, cultural and socio-economic factors, the economic development and population forecast, urban development, and constraints specification. To achieve the above purpose, the Government has set for the overall planning of city Kigali, different stages of the detailed description of the design, strategy and action plan that would guide Kigali planners and members of the public in the future to have more detailed regional plans and practical measures. Thus, land use change is significantly the performance of Kigali active human area, which plays an important role for the country to take certain decisions. Another area to take into account is the natural situation of Kigali city. Agriculture in the region does not occupy a dominant position, and with the population growth and socio-economic development, the construction area will gradually rise and speed up the process of urbanization. Thus, as a developing country, Rwanda's population continues to grow and there is low rate of utilization of land, where urbanization remains low. As mentioned earlier, the 1994 genocide massacres, population growth and urbanization processes, have been the factors driving the dramatic changes in land use. The focus on further research would be on analysis of Rwanda’s natural resources, social and economic factors that could be, the driving force of land use change.Keywords: Land use change, urbanization, Kigali City, Landsat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10601120 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques
Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar
Abstract:
This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.
Keywords: Cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29801119 Mobile Robot Navigation Using Local Model Networks
Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany
Abstract:
Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20211118 A Hybrid Approach for Thread Recommendation in MOOC Forums
Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard
Abstract:
Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12631117 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.
Keywords: Convolutional image, lower knee, gait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10681116 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981115 Creative Thinking Skill Approach Through Problem-Based Learning: Pedagogy and Practice in the Engineering Classroom
Authors: Halizah Awang, Ishak Ramly
Abstract:
Problem-based learning (PBL) is one of the student centered approaches and has been considered by a number of higher educational institutions in many parts of the world as a method of delivery. This paper presents a creative thinking approach for implementing Problem-based Learning in Mechanics of Structure within a Malaysian Polytechnics environment. In the learning process, students learn how to analyze the problem given among the students and sharing classroom knowledge into practice. Further, through this course-s emphasis on problem-based learning, students acquire creative thinking skills and professional skills as they tackle complex, interdisciplinary and real-situation problems. Once the creative ideas are generated, there are useful additional techniques for tender ideas that will grow into a productive concept or solution. The combination of creative skills and technical abilities will enable the students to be ready to “hit-the-ground-running" and produce in industry when they graduate.Keywords: Creative Thinking Skills, Problem-based Learning, Problem Solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73231114 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8171113 Smartphone Video Source Identification Based on Sensor Pattern Noise
Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.Keywords: Digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198