Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval

Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed

Abstract:

In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.

Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1071838

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188

References:


[1] Y. Bastide. Data mining: algorithmes par niveau, techniques d-implantation et applications. Theses of University Doctor, University Blaise Pascal, 2000.
[2] C. Carpinetto & G. Romano. Order-theoretical ranking. Journal of the American Society for Information Science, 51(7):587-601, John Wiley and Sons Incorporation, 2000.
[3] M. Cluzeau-Ciry. Typologie des utilisateurs et des utilisations d-une banque d-images. Le documentaliste, 25(3), 155-120, 1988.
[4] W.B. Croft & D.J. Harper. Using probabilistic models of document retrieval without relevance information. Documentation, 35, 285-295, 1979.
[5] P.J. Daniels & E.L. Rissland. A Case Based Approach to Intelligent Information Retrieval. In Proceedings of Conference on Research and Development in Information Retrieval (ACM SIGIR-95), pp. 238-245, Seattle WA, USA, 1995.
[6] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landuer, & R. Harshman. Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.
[7] G.W. Furnas, T.K. Landauer, L.M. Gomez & S.T. Dumais. The vocabulary problem in human-system communication. Communications of the ACM, 30, 964-971, 1987.
[8] R. Godin, J. Gecsi & C. Pichet. Design of browsing interface for information retrieval. In Proceedings of the 12th International Conference on Research and Development in Information Retrieval (ACM SIGIR-89), pp. 32-39, Cambridge, MA: ACM, 1989.
[9] R. Godin R. Missaoui & A april. Experimental comparison of navigation in a Galois lattice with conventional retrieval methods. International Journal of Man Machine Studies, 38, 747-767, 1993.
[10] D. Harman. Relevance feedback and other query modification techniques. In W.B. Frakes & Baeza-Yates (Eds). Information retrieval data structures and algorithms, pp. 241-263, Englewood cliffs, NJ:Prentice Hall, 1992.
[11] T. Kohonen. Self-organization and associative memory. Springer- Verlag, third edition, 1989.
[12] J. C. Lamirel. Application d-une approche symbolico-connexioniste pour la conception d-un système documentaire hautement interactif, le prototype NOMAD. Theses of University Doctor, University Henri- Poincaré, Nancy I, Nancy France, 1995.
[13] J. H. Lee. Combining the evidence of different relevance feedback methods for information retrieval. Information Processing Management, 34(6):681-691, 1998.
[14] X. Lin, D. Soergel & G. Marchionini. A self organizing semantic map from information retrieval. In proceedings of 4th international SIGFIR conference on R&D in information retrieval, pp. 262-269, 1991
[15] J-Y. Nie. An outline of general model for information retrieval systems. In Proceedings of International Conference on Research and Development in Information Retrieval (ACM SIGIR-88), pp. 495-506, 1988.
[16] V. Rijsbergen. Information retrieval. London: Butterworths, 1979.
[17] S.E. Roberston & K. Sparck-Jones. Relevance weighting of search terms. Journal of The American Society for Information Science, 27:129-146, 1976.
[18] J. J. Rocchio. Relevance feedback in information retrieval. Technical report ISR-9, Computational Sciences Department, University of Cornell, Ithaca, N.Y., 1965. Reprinted in The Smart Retrieval System, Edition G. Salton, 1971.
[19] G. Salton. The SMART retrieval system. Prentice-Hall, Englewood Cliffs, N. J., 1971.
[20] G. Salton & C. Buckley. Term weighting approaches in automatic text retrieval. Information Processing and Management, 24, 513-523, 1988.
[21] P. Thompson & W. B. Croft. Support for browsing in intelligent text retrieval system. International Journal in Man Machine Studies. 30, 639-668, 1989.
[22] H. Turtle & W. B. Croft. Evaluation of an inference network-bases retrieval model. ACM Transactions on Information Systems, 9(3):187- 222, 1991.
[23] E. M. Voorhees & D. Harman. Overview of the sixth text retrieval conference (TREC-6). NIST special edition, 1993.
[24] S. Walker, S.E. Roberston. M. Boughanem, G. J. F. Jones & K. Sparck-Jones. OKAPI at TREC-6. In Proceedings of the sixth Text Retrieval Conference (TREC-6), NIST Special Publication, 1997.
[25] J. XU & B. croft Query expansion using local and global document analysis. In proceedings of the 19th international conference on research and development in information retrieval (ACM SIGIR-96), pp. 4-11, Zurich:ACM.
[26] H. Zhang, S. W. Smoliar & J. H. Wu. Content-based video browsing tools. Multimedia computing and networking, vol. 2417-35. IS&TSPIE, 1995.