

Abstract—Counterfeit goods and documents are a global

problem, which needs more and more sophisticated methods of
resolving it. Existing techniques using watermarking or embedding
symbols on objects are not suitable for all use cases. To address those
special needs, we created complete system allowing authentication of
paper documents and physical objects with flat surface. Objects are
marked using orientation independent and resistant to camera noise
2D graphic codes, named DotAuth. Based on the identifier stored in
2D code, the system is able to perform basic authentication and
allows to conduct more sophisticated analysis methods, e.g., relying
on augmented reality and physical properties of the object. In this
paper, we present the complete architecture, algorithms and
applications of the proposed system. Results of the features
comparison of the proposed solution and other products are presented
as well, pointing to the existence of many advantages that increase
usability and efficiency in the means of protecting physical objects.

Keywords—Authentication, paper documents, security, anti-

forgery.

I. INTRODUCTION

APER documents still play an important role in
communications between governmental agencies, citizens

and businesses. Many organizations continue using paper
documents for invoicing, creating and signing contracts, as
well as for communicating with their business partners and
clients. It is easy to imagine a situation in which someone
creates a falsified document to discredit an organization, e.g.
by providing false information to its customers. Nowadays,
falsified documents are easier to create than ever before – a
PC with a printer and a text editing software is all it takes.
Anyone is capable of creating a document pretending to be a
company headletter, with any text published thereon. Such a
falsified document may be sent to the company’s customers
who, being convinced of its genuine character, may draw false
conclusions about the alleged sender.

In [1], the authors conducted a study which resulted in
determining three different approaches to falsifying
documents in order to fraudulently receive money from an
insurance company: The first one - Print, Paste and Copy
(PPC) – consisting in printing a new text on an empty sheet,
and then pasting it onto a part of the genuine document. The
next step was to copy the document using a color copy
machine. The second approach was known as Reverse
Engineered Imitation (REI) forgeries. In this approach, the
forger creates a new, editable document based on the genuine

M. Glet and K. Kaczyński are with Military University of Technology,

Faculty of Cybernetics, Institute of Mathematics of Cryptology (e-mail:
michal.glet@wat.edu.pl, kamil.kaczynski@wat.edu.pl)

copy. In the case of that study, people were imitating genuine
invoices, retyping all the text and placing the logos, dates, etc.
at the proper locations. The third approach was named Scan,
Edit and Print (SEP). The forger scanned the original
document and then manipulated the digital image thereof.

There are many works dealing with counterfeiting digital
and paper documents. In [2], the authors are focusing on
documents which were digitalized, and the digital copies are
protected by using a 1D hash algorithm and 2D iFFT
encrypting documents in the 2D spatial domain. In [3], one
may find a method for identification of the source printer that
was used for creating the forged document. The authors claim
that accuracy of 76.75% may be achieved. The authors of [4]
propose a text-line examination method which may be relied
upon in high-volume environments. The method requires that
each analyzed document be digitized, and that feature points
be collected from the binarized images.

The methods mentioned above are truly effective, but they
cannot be used for authenticating documents by parties
without special equipment. Our system – DotAuth - is a
solution dedicated for individuals who are also widely affected
by forged documents. The proposed system does not require
any special hardware – all verification steps are performed
with the user’s smartphone. A dedicated DotAuth app
analyzes document contents using the smartphone camera and
computer vision algorithms. Such an approach makes it easy
to deploy the solution on the mass scale. The system may be
used for authentication of paper documents or items with a flat
surface – e.g. product packaging. The DotAuth authentication
symbol comprises several points located along the line of a
circle. The document does not have to be placed in one correct
position for the purpose of authentication. The symbol will be
calculated correctly regardless of the orientation of the image.
The document is divided into several areas with different
authentication circles. The user has to scan the entire
document or only its selected areas, providing enough data to
verify the authenticity of the document. Unlike classic
methods, such as watermarks, our solution is much harder to
copy into the falsified document, simultaneously being much
easier to read with the use of computer vision mechanisms.

A somewhat similar approach may be found in [5]. The
authors describe a visual information concealment technique
which may be deployed for document authentication purposes.
The main disadvantage of this method, compared to the one
proposed in this paper, consists in the lack of a fast and easy
mechanism for reading the authentication-related information.
This renders the method in question unsuitable for commercial
applications in which no sophisticated devices performing the

Authentication of Physical Objects with Dot-Based
2D Code

Michał Glet, Kamil Kaczyński

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

293International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

authentication process are available.

II. DOTAUTH PRINCIPLES AND ALGORITHM

There are two types of methods used for authentication of
physical products such as documents, goods, drugs, etc. The
first method is based on intrinsic properties that are directly
related to the product subjected to authentication. In the case
of paper documents, the intrinsic properties include, for
instance, paper gloss, brightness, opacity and color. The other
category of authentication methods relies on extrinsic
properties which are added to the product during the marking
process. In the case of paper documents, those properties
include, for instance, watermarks, printed symbols, chemical
marks, etc. An ideal authentication system should be capable
of checking both intrinsic and extrinsic properties of a given
product. Of course, such a system would be totally
impractical, so in a real-life scenario a tradeoff between the
degree of security and usability exists. Therefore, when
developing a system for widespread use, the following
features need to be taken into consideration:
 Ability to use existing production techniques;
 Ability to perform a machine analysis;
 Low cost of integration with the product;
 Analysis performed with the use of widely available

hardware;
 Ability to perform the analysis by a person without expert

knowledge;
 Unique identifiers for each product;
 Inseparably integrated with the product;
 Cryptographically secure.

Authentication of digital documents or other digital data can
be performed using digital signature schemes. Thus, data may
be authenticated in the most convenient way without any need
of manual steps being taken by the validating party. All
authentication-related steps may be performed by the end-user
application, e.g. for authenticating PDF files, the user may rely
on the built-in Adobe Reader functionality. Unfortunately, the
same does not apply to traditional documents. In [6], the
authors propose a scheme which uses QR Codes and the
digital signature scheme for authenticating paper-based
documents. The main disadvantage of that method is its
sensitivity to OCR errors, resulting in false negatives obtained
during the verification process. Another approach to solve the
problem was presented by a company called Jumio [7]. The
document verification service performed the analysis by
capturing an image of the document in question and by
extracting some key identity-related information therefrom.
The service needs to store all key information in its database,
which may lead to unintended disclosure of such information.
The solution is also sensitive to OCR errors, so it may provide
false negative results during the verification process.

DotAuth combines different approaches to document
verification. Firstly, it uses a proprietary 2D code technology,
printing a code on the marked document. Secondly, it allows
the user to manually verify if the paper document is equal to
its digital equivalent. Lastly, using augmented reality, the
DotAuth application may highlight the modified elements of

the document or may mark it as genuine. The DotAuth
application is communicating with service servers, using data
read from the 2D code as part of the communication requests.
Details concerning the communication process are described
in the following section.

A. DotAuth Code Creation

The DotAuth 2D code (Fig. 1) is composed of points (dots)
placed along the perimeters of circles sharing the same center
and having different radiuses. The code consists of n circles,
divided into k sectors. Thus, up to n points may be placed in
each sector. Each point will denote one bit – if a point is
present, the bit value equals 1. If no point is present, the bit
value is 0. The innermost circle is reserved for synchronizing
the code position, ensuring that the data is read in the proper
order. The overall capacity of the DotAuth (n,k) code is equal
to (n-1)k bits. The point localized on the innermost circle and
the center of that is used for synchronizing the code position –
the point on the innermost circle defines the “up” direction of
the code.

Fig. 1 DotAuth 2D code – dots placed on circles

The process of creating a new DotAuth (n,k) code requires
that the following steps be performed:
1. Generate n circles with a common center with Cartesian

coordinates O=(x,y). The radius of the innermost circle is
equal to r; the radius of the second circle is equal to 2r,
and so on.

2. Divide the circles into k sectors.
3. Create sector iterator i=0.
4. Place a synchronization dot on the top of innermost circle

– at the point with coordinates (x,y+r).
5. Take subsequent (n-1) bits of the identifier and store it in

the vector 𝑣 𝑣 , … , 𝑣 .
6. Starting from the outermost circle, take 𝑣 and if it is

equal to 1, place a dot at the point with coordinates

𝑥 𝑛 ∙ 𝑟 ∙ sin , 𝑦 𝑛 ∙ 𝑟 ∙ cos , if 𝑣 is equal 0, go to

step 7.
7. Take the next element from vector 𝑣 – element 𝑣 , where

m is initially equal to 1. If 𝑣 is equal to 1, place a dot at
the point with coordinates

𝑥 𝑛 𝑚 ∙ 𝑟 ∙ sin , 𝑦 𝑛 𝑚 ∙ 𝑟 ∙ cos , if 𝑣 is

equal to 0 do nothing. Increment value m and repeat step
7, until m=n-1.

8. Increment sector iterator i. If i<k go to the step 5.
Otherwise, the code creation process is completed.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

294International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

The process of code creation may also be described as
moving from the center of the circle towards its perimeter and
placing points on the circles sharing the same center and
having different radiuses. After each step, there is change in

angle that equals . The capacity of the code may be easily

tailored to the needs of each implementation. For example, if
we need to store 48 bits of data, then we need to create a
DotAuth code with 4 circles divided into 16 sectors. During
the creation process, it is necessary to locate at least three
points on the outermost circle. It is not possible to decode a
DotAuth code with zero, one or two points on the outermost
circle.

B. Reading DotAuth Code

The DotAuth code may be read using optical techniques,
e.g. by analyzing the image captured with a smartphone
camera. The main problem for that type of analysis is to
ensure that the elements of the code are read in the proper
way. For codes like QR Code [8], there are several types of
patterns – alignment pattern, finding pattern and timing pattern
enabling the code data to be read without a synchronization
error. The DotAuth code may be located e.g. under the body
of the document, meaning that the classic techniques are not
effective here. The synchronization process is based on two
points – the first one is located on the innermost circle of the
DotAuth code, while the other one – not visible – is the center
of the DotAuth circle. With these two distinct points
identified, it is possible to recreate the half-line starting at the
center of the circle and passing through the point on the
innermost circle. The half-line determines the direction based
on which the starting point of the DotAuth code is identified.

Fig. 2 DotAuth code with distinguished points (A, B, C, D)

The process of decoding the DotAuth code requires specific
knowledge about the equation identifying the outermost circle,
the number of circles n and the number of sectors k. n and k
are implementation-dependent, meaning that they will be
constant and may hardcoded, for instance, into the decoding
app. In order to recreate the equation of the outermost circle, it
is necessary to have at least 3 points that are positioned on this
circle. Fig. 2 shows the DotAuth code with three points –
𝐴 𝑥 , 𝑦 , , 𝐵 𝑥 , 𝑦 and 𝐶 𝑥 , 𝑦 located on the
outermost circle. Such may be easily recovered with the use of
image processing libraries, so we can use their coordinates and

substitute them into the circle equation, obtaining the
following system of equations.

𝑥 𝑥 𝑦 𝑦 𝑅
𝑥 𝑥 𝑦 𝑦 𝑅
𝑥 𝑥 𝑦 𝑦 𝑅

 (1)

After solving (1) it is possible to recover the location of the

synchronizing point. Using the image processing technique,
we get the coordinates of point 𝐷 𝑥 , 𝑦 , with the
coordinates of the circle center 𝑂 𝑥, 𝑦 known as well.
Given those coordinates, we can calculate the angle between

vector 𝑂𝐷 and vector 𝚥 0,1 . We denote that angle as 𝛼.
Now, having all necessary data, it is possible to recover data
from the DotAuth code by performing the following steps:
1. Generate n circles with a common center with Cartesian

coordinates O=(x,y). The radius of the innermost circle is

equal to 𝑟 ; the radius of the second circle is equal to

2r, and so on.
2. Initiate vector v with (n-1)k elements.
3. Initiate sector iterator i=0.
4. Initiate m=0.
5. Starting from the outermost circle, check if there is a dot

near the point with coordinates 𝑥 𝑛 𝑚 ∙ 𝑟 ∙ sin

𝛼 , 𝑦 𝑛 𝑚 ∙ 𝑟 ∙ cos 𝛼 , if it exists add element 1

to vector v, otherwise add element 0 to vector v.
Increment m.

6. If m<n-1, go to step 5.
7. Increment sector iterator i. If i<k, go to step 4. Otherwise,

the reading process is completed.
Decoded vector v is the identifier stored in the DotAuth

code. When the term “dot near the point” was used, it meant
the neighborhood of that point with radius of within that

point. No error correction step is performed in DotAuth, but it
may be added at the expense of reducing the capacity of the
code.

C. Main Properties of DotAuth System

The DotAuth system relies on the DotAuth code and
cryptography to deliver a trustworthy solution for
authenticating paper documents and other physical objects.
The DotAuth code is used as an identifier, and it may also be
replaced with any other machine-readable code for special
purpose applications. The main advantage of the DotAuth
code is that it may be placed under the text, meaning that it
may be easily adopted to existing document templates and
may even be printed on a document after it has been created.

Fig. 3 shows the DotAuth code placed under a specific text.
Using the dedicated app and a compatible smartphone, one
may read the identifier and send it to the DotAuth server. The
server replies with basic metadata about the identified product
and – if a document is being validated – returns a URL
allowing to download the encrypted file for further analysis.
After decrypting, the file may be analyzed manually or with
the use of augmented reality methods. It may be marked as

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

295International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

genuine or the modified elements may be highlighted. All
documents are stored in an encrypted form on the DotAuth
servers. All steps of the analysis process are performed on the
user device, preventing sensitive data from leaking.
Encryption/decryption keys are generated using an identifier
and secret data read from the DotAuth code, as well as using
other implementation specific data. The algorithm used in the
encryption process is AES-256.

Fig. 3 DotAuth code under the text

Manual verification of document contents should be

available whenever no augmented reality tools are available. It
is also possible to come up with a specific verification
sequence – first, the user performs manual verification of the
document content, then it is possible to perform automatic
verification with the AR method. The two-step approach may
be useful for long documents, such as contracts.

Fig. 4 Process of analyzing data in the DotAuth system

III. PROPOSED ARCHITECTURE OF THE SYSTEM

The proposed architecture of the DotAuth authentication
system comprises dedicated subsystems (Fig. 5) that are
intended for performing various, nearly independent data and
request processing steps. This kind of architecture poses some
difficulties related to developing and managing the system, but
is very flexible and suitable for very easy horizontal and
vertical scaling in the event of high system load and usage
ratios.

Fig. 5 Overview of the DotAuth authentication system architecture

The DotAuth authentication system is built based on the
following subsystems:
1. Database subsystem.
2. Backend application.
3. API services.
4. Frontend application.
5. Mobile applications

A. Database Subsystem

This part of the DotAuth authentication system is
responsible for storing system-relevant data. Depending on the
utilization of the system and its resources, the database
subsystem may rely on SQL database management systems,
NoSQL database applications and file storage services. All
sensitive data stored in the database subsystem will be
maintained in an encrypted form. Business communication
with the database subsystem will be fully authenticated and
may only be initiated by the DotAuth backend application. All
communications with the database subsystem will be
encrypted, ensuring proper levels of data privacy and integrity.

B. Backend Application

The backend application is a major subsystem in terms of
business processing. This part of the DotAuth authentication
system is responsible for the processing of business data and
business requests. The backend application receives requests
from the frontend application and API services, passing those
requests from end users and objects owners. Furthermore, the
backend application is responsible for authentication and
authorization of requests – it checks whether the rights to
access the requested data and to process the resources have
been granted. All communications with the backend
application will be encrypted and will guarantee privacy and
integrity of data.

C. API Services

This part of the DotAuth authentication system exposes, to
the Internet, the API services that are intended to be used by
DotAuth mobile applications. All communications between
the mobile applications and the server side of the system
(backend application, database subsystem) pass through the
API services. API services expose the business methods that
are relied upon directly by the mobile applications to perform
server-side business operations – e.g. to retrieve information
about the object that is being authenticated. API services will
be protected against unauthorized access. All communications

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

296International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

with API services will be encrypted and will provide proper
levels of data privacy and integrity.

D. Frontend Application

This part of the DotAuth authentication system is intended
to be used by object owners (business end users who intend to
mark objects, e.g. documents). The frontend application
provides a web-based graphical user interface that may be
used to perform business actions in the DotAuth system. The
main business action allows to upload a document (object),
marks it with the authentication data and downloads the new
version. Additionally, the frontend application performs
activities allowing, inter alia, to manage the objects
(documents), objects (documents) marked with the DotAuth
code or company users. All communications between the end
user and the frontend application will be encrypted and will
offer proper levels of data privacy and integrity.

E. Mobile Applications

This part of the DotAuth authentication system is intended
to be used by users (business end users who intend to
authenticate objects, e.g. documents). The DotAuth system
will offer mobile applications for two major mobile operating
systems – Google Android and Apple iOS. The main business
action supported by the mobile applications consists in
authenticating the objects (documents). This action is
triggered by the user who has scanned the DotAuth code from
a specific object. Then, the mobile application performs
AI/AR image processing and performs computations
described in the previous sections in order to read the
identifier stored in the DotAuth code. Then, via API services,
the mobile application communicates with the DotAuth
backend application, and the data returned thereby is relied
upon to decide whether the object in question may or may not
be authenticated. All communications between the mobile
applications and API services will be encrypted and will
ensure proper levels of data privacy and integrity.

IV. HIGH CAPACITY DOTAUTH CODE

The DotAuth code described in the previous sections has a
relatively low capacity – low amounts of data may be stored
therein. This amount is suitable for the presented DotAuth
authentication system but may not be suitable for some other
applications. In such cases, a high capacity version of the
DotAuth code may be used.

A. Basic Idea

The idea of a high capacity DotAuth code is very simple
and is based on the same DotAuth code principle. In the
standard (low capacity) version of the DotAuth(n,k) code,
there are n circles and each of them is divided into k sectors.
Each sector is used to store data. Only one bit of data may be
stored in a single sector of a single circle. This process is
based on the dot notation presented in previous sections. Each
sector of each circle has the same radian length. But the length
of sectors (arc length) of circles with a bigger radius is greater
than in circles with smaller radiuses. Sector arc length depends

on circle radius and on the value of parameter k of the
DotAuth code. It may be computed with the use of (R is the
radius of the circle):

𝑠𝑒𝑐𝑡𝑜𝑟_𝑎𝑟𝑐_𝑙𝑒𝑛𝑔𝑡ℎ 𝑅, 𝑘 2∙𝜋∙𝑅

𝑘
 (2)

The high capacity DotAuth code uses this length to

determine how much data may be stored in a single sector of a
given circle. This is the main difference between the normal
DotAuth code and its high capacity version. In the high
capacity version, one sector may store more than one bit of
data only. Sector capacity depends on the length of the sector
arc and on the diameter of the dot that is used to store data.
That is why the high capacity DotAuth code is associated with
three parameters:
1. n – number of circles
2. k – number of sectors in every circle
3. d – dot diameter

The high capacity DotAuth code will be marked as
hcDotAuth(n,k,d). The overall capacity of the
hcDotAuth(n,k,d) code may be computed based on (where r is
the radius of the innermost circle):

ℎ𝑐𝐷𝑜𝑡𝐴𝑢𝑡ℎ , , ∑ ∙ ∙ ∙
 (3)

The overall capacity of the code depends largely on the

diameter of the dot. Codes with small dots it will offer much
more capacity than those with big dots. Table I shows the
capacity of the hcDotAuth code for constant n and k values
and for different d parameter values.

TABLE I

CAPACITY OF THE HCDOTAUTH CODE VS. D PARAMETER VALUE

Circle number
d/r ratio (dot diameter/radius of the innermost circle)

1 0,8 0,6 0,4 0,2

2 12 15 20 31 62

3 18 23 31 47 94

4 25 32 41 62 125

5 31 39 52 78 157

6 37 47 62 94 188

7 43 54 73 109 219

8 50 62 83 125 251

9 56 70 94 141 282

10 62 78 104 157 314

Total capacity: 334 419 560 844 1692

B. Code Creation Principle

The process of creating hcDotAuth(n,k,d) code is very
similar to that described in Section II A and requires that the
following steps are performed:
1. Generate n circles with a common center with Cartesian

coordinates O=(x, y). The radius of the innermost circle is
equal to r; the radius of the second circle is equal to 2r,
and so on.

2. Divide circles into k sectors.
3. Create sector iterator i = 0.
4. Place a synchronization dot on the top of the innermost

circle – at the point with coordinates (x, y+r).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

297International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

5. Take subsequent 𝑙 ℎ𝑐𝐷𝑜𝑡𝐴𝑢𝑡ℎ_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑛, 𝑘, 𝑑 bits
of the data and store it in vector 𝑣 𝑣 , … , 𝑣 .

6. For every circle 𝑐 2, 𝑛, starting from the outermost
circle 𝑐 𝑛:

a. Compute capacity 𝑙 of circle number , 𝑙 ∙ ∙ ∙

∙
.

b. Take the first 𝑙 bits of 𝑣, put them in vector 𝑤
𝑤 , … , 𝑤 , and remove them from vector v.

c. For every 𝑤 for 𝑗 1, 𝑙 check if 𝑤 is equal to 1. If yes,

place a dot at the point with coordinates 𝑥 𝑐 ∙ 𝑟 ∙

sin
∙ ∙

∙
∙ 𝑗 1 , 𝑦 𝑐 ∙ 𝑟 ∙ cos

∙ ∙

∙
∙ 𝑗 1 . If

no, leave an empty space.
d. Compute 𝑐 𝑐 1, and if 𝑐 1, go to step a.
7. Compute 𝑖 𝑖 1 and if 𝑖 𝑘, go to step 6. Otherwise,

the code creation process is completed.

Fig. 6 hcDotAuth 2D code – synchronization dot and dots in one
sector for a sample vector consisting of ones only.

C. Code Reading Principle

The process of reading the hcDotAuth(n,k,d) code is very
similar to that described in Section II B. After recovering the
synchronization location point 𝐷 𝑥 , 𝑦 , the circle center
𝑂 𝑥, 𝑦 , the radius of the outermost circle R and angle 𝛼,
the following steps need to be performed:
1. Generate n circles with a common center with Cartesian

coordinates O=(x,y). The radius of the innermost circle is

equal to 𝑟 ; the radius of the second circle is equal to

2r, and so on.
2. Compute code capacity 𝑙 ℎ𝑐𝐷𝑜𝑡𝐴𝑢𝑡ℎ_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑛, 𝑘, 𝑑 .
Initiate vector v with 𝑙 elements.
Initiate sector iterator 𝑖 0.
For every circle 𝑐 2, 𝑛, starting from the outermost circle
𝑐 𝑛:

e. Compute capacity 𝑙 of circle number 𝑐, 𝑙 ∙ ∙ ∙

∙
.

f. Create vector 𝑤 𝑤 , … , 𝑤 .

g. For every 𝑗 1, 𝑙 check if there is a dot near (|∆𝑑|)

coordinates 𝑥 𝑐 ∙ 𝑟 ∙ sin
∙ ∙

∙
∙ 𝑗 1 𝛼 ∆𝑑, 𝑦

𝑐 ∙ 𝑟 ∙ cos
∙ ∙

∙
∙ 𝑗 1 𝛼 ∆𝑑 . If yes, set 𝑤 1.

If no, set 𝑤 0.
h. Add data from vector w to the end of data in vector v.

Compute 𝑐 𝑐 1 and if 𝑐 1, go to step a.

Compute 𝑖 𝑖 1 and if 𝑖 𝑘, go to step 5. Otherwise,
the code reading process is completed.

Decoded vector v contains data stored in the
hcDotAuth(n,k,d) code. There is no error correcting step in the
hcDotAuth(n,k,d) process. It may be added at the expense of
reducing the capacity of the code.

Fig. 7 hcDotAuth 2D code with custom symbols – a sample of the
hcDotAuth code with one sector filled with ones (a) and the same

hcDotAuth code printed a sample toy [9] label (b)

D. Custom Dots

The high capacity version of the hcDotAuth(n,k,d) code
makes it possible to use other graphical symbols as well.
Those graphical symbols may be related to the specific
application of the hcDotAuth(n,k,d) code. For example,
company marks could be used to secure company documents,
or star marks could be used to mark toy labels. The only
requirement is that the symbol used must fit within a circle
with its diameter equal to d. Because of this feature, the
hcDotAuth(n,k,d) code is highly flexible, meaning that it may
be customized to satisfy the needs of specific applications and
may be easily hidden within other graphical symbols.

E. Main Drawbacks and Advantages

The main drawbacks of the hcDotAuth(n,k,d) code include
the following:
 Creation process of the hcDotAuth(n,k,d) code is more

complicated than creation process of the DotAuth(n,k)
code

 Reading process of the hcDotAuth(n,k,d) code is more
complicated than reading process of the DotAuth(n,k)
code

 If more graphical symbols are added to the existing
graphical layout, readability may deteriorate.

The main advantages of the hcDotAuth(n,k,d) code include
the following:
 Much higher capacity of the hcDotAuth(n,k,d) code

allows to store not only identifiers, but also other data
required to satisfy the needs of a specific application.

 The hcDotAuth(n,k,d) code allows to use custom graphic
symbols instead of dots.

 As custom graphic symbols may be used, the
hcDotAuth(n,k,d) code may be graphically integrated with

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

298International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

the current designs and applications.
 The system may contain data used, for instance, to

perform simple offline authentication of the marked
objects.

 Error correction outputs and other security algorithms
may be added to the stored data.

V. CONCLUSION

In this paper, we have proposed a complete system for
authentication of paper documents and other physical objects
with a flat surface. The main part of the system has the form
of a 2D code – DotAuth code – which may be placed under
the text, rendering our solution suitable for existing document
templates. We have provided complete algorithms for creating
and reading the 2D code developed and come up with its high
capacity version that may be used in other applications, also
those of a special character. The codes developed are
characterized by some very unique features that make them
suitable for scenarios in which other 2D codes fail – e.g. they
may be used to mark existing objects with a code that is
seamlessly integrated with the existing layout and graphical
design, or to place marks under the text in existing documents.
We have described the architecture of the DotAuth system,
capable of supporting all functionalities related to
authentication and creation of the marked objects.

The architecture of the DotAuth system and the 2D code are
the foundations of a user-friendly process used for
authenticating products and documents, facilitating its
widespread use. In our future work, we will focus mainly on
analyzing security-related aspects of DotAuth/hcDotAuth
codes and on validating DotAuth readability under different
environmental conditions. Specifically, we will develop a
version of the DotAuth code employing error correcting
techniques to decrease the misread data rate. We will also
provide a sample payload format – for the identifier and the
local secret – used in the authentication process. Our future
work will also tackle such issues as choosing the color of the
code elements in order to adapt them to the medium on which
they are used, maximizing legibility of text to the user, as well
as maximizing readability of the code to vision recognition
algorithms.

The DotAuth/hcDotAuth code proposed paves way to a way
of thinking about 2D codes and their utilization. Currently, 2D
codes are not integrated and form separate elements that fail to
match, in many cases, the rest of the object (document) – the
DotAuth/hcDotAuth code may be added without disturbing
the graphical style and layout of the object concerned.
Additionally, the 2D code proposed may be easily adapted to
applications other than those concerned with object
authentication. As long as a flat surface is available, the
DotAuth/hcDotAuth code relying on custom symbols (dots) to
store custom types of data may be used. Such a high degree of
customization may be particularly useful in scenarios in which
brand recognition is being established.

REFERENCES
[1] Lindblom, B.S., Gervais, R.: Scientific Examination of Questioned

Documents. pp. 238–241. Taylor and Francis, Boca Raton, FL (2006).
[2] Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2009). A secure

and improved self-embedding algorithm to combat digital document
forgery. Signal Processing, 89(12), 2324-2332.

[3] Elkasrawi, S., & Shafait, F. (2014, April). Printer identification using
supervised learning for document forgery detection. In 2014 11th IAPR
International Workshop on Document Analysis Systems (pp. 146-150).
IEEE.

[4] Van Beusekom, J., Shafait, F., & Breuel, T. M. (2013). Text-line
examination for document forgery detection. International Journal on
Document Analysis and Recognition (IJDAR), 16(2), 189-207.

[5] Huang, S., & Wu, J. K. (2007). Optical watermarking for printed
document authentication. IEEE Transactions on Information Forensics
and Security, 2(2), 164-173.

[6] Warasart, M., & Kuacharoen, P. (2012, May). Paper-based document
authentication using digital signature and QR code. In 4th International
Conference on Computer Engineering and Tecnology (ICCET 2012).

[7] Jumio homepage, https://www.jumio.com/trusted-
identity/netverify/document-verification/, last accesed 02/05/2020

[8] Soon, T. J. (2008). QR code. Synthesis Journal, 2008, pp. 59-78.
[9] Image retrieved at 02/17/2020 from

https://www.freelancer.com/contest/Label-for-toy-1403253-byentry-
23008342.

Michał Glet – is an Assistant at the Faculty of Cybernetics at the Military
University of Technology in Warsaw, Poland. His research interests include
cybersecurity, cryptography, cryptoanalysis, malware analysis, software
reverse engineering, and software development.

Kamil Kaczyński – Military University of Technology, R&D assistant,
Cryptography, Steganography, Blockchain, Cryptanalysis, Steganalysis,
Mobile applications, Internet of Things (IoT)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:8, 2020

299International Scholarly and Scientific Research & Innovation 14(8) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
8,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
38

3.
pd

f

