Search results for: Competitive Neural Network
2182 Correlated Neural Activity in Cortex and Thalamus Following Brain Injury
Authors: Young-Seok Choi
Abstract:
It has been known that a characteristic Burst-Suppression (BS) pattern appears in EEG during the early recovery period following Cardiac Arrest (CA). Here, to explore the relationship between cortical and subcortical neural activities underlying BS, extracellular activity in the parietal cortex and the centromedian nucleus of the thalamus and extradural EEG were recorded in a rodent CA model. During the BS, the cortical firing rate is extraordinarily high, and that bursts in EEG correlate to dense spikes in cortical neurons. Newly observed phenomena are that 1) thalamic activity reemerges earlier than cortical activity following CA, and 2) the correlation coefficient of cortical and thalamic activities rises during BS period. These results would help elucidate the underlying mechanism of brain recovery after CA injury.Keywords: Cortex, thalamus, cardiac arrest, burst-suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19352181 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.
Keywords: EEG, functional connectivity, graph theory, TFCMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25102180 Allocation of Mobile Units in an Urban Emergency Service System
Authors: Dimitra Alexiou
Abstract:
In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.
Keywords: Distances, Emergency Service, Graph Partition, location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19452179 Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range
Authors: Toru Murayama, Akinori Nagano, Zhi-Wei Luo
Abstract:
In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.Keywords: Hybrid system, multi-vehicle system, receding horizon control, topology control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14122178 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17722177 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents
Authors: P. Cermak
Abstract:
This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12582176 Logistic and Its Importance in Turkish Food Sector and an Analysis of the Logistics Sector in Turkey
Authors: Şule Turhan, Özlem Turan
Abstract:
Permanence in the international markets for many global companies is about being known as having effective logistics which targets customer satisfaction management and lower costs. Under competitive conditions, the necessity of providing the products to customers quickly and on time for the companies which constantly aim to improve their profitability increased the strategic importance of the logistics concept. Food logistic is one of the most difficult areas in logistics. In the process from manufacturer to final consumer, quality and hygiene standards must be provided constantly. In food logistics, reliable and extensive service network has great importance and on time delivery is the target. Developing logistics industry provide the supply of foods in the country and the development of export markets more quickly and has an important role in providing added value to the country's economy. Turkey that creates a bridge between the east and the west is an attractive market for logistics companies. In this study, by examining both the place and the importance of logistics in Turkish food sector, recommendations will be made for the food industry.Keywords: Logistics, Turkish food industry, competition, food industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13452175 An Analysis of the Social Network Structure of Knowledge Management Students at NTU
Authors: Guo Yanru, Zhu Xiaobo, Lee Chu Keong
Abstract:
This paper maps the structure of the social network of the 2011 class ofsixty graduate students of the Masters of Science (Knowledge Management) programme at the Nanyang Technological University, based on their friending relationships on Facebook. To ensure anonymity, actual names were not used. Instead, they were replaced with codes constructed from their gender, nationality, mode of study, year of enrollment and a unique number. The relationships between friends within the class, and among the seniors and alumni of the programme wereplotted. UCINet and Pajek were used to plot the sociogram, to compute the density, inclusivity, and degree, global, betweenness, and Bonacich centralities, to partition the students into two groups, namely, active and peripheral, and to identify the cut-points. Homophily was investigated, and it was observed for nationality and study mode. The groups students formed on Facebook were also studied, and of fifteen groups, eight were classified as dead, which we defined as those that have been inactive for over two months.Keywords: Facebook, friending relationships, Social network analysis, social network sites, structural position
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17552174 Investigation into the Role of Leadership in the Management of Digital Transformation for Small and Medium Enterprises
Authors: Francesco Coraci, Abdul-Hadi G. Abulrub
Abstract:
Digital technology is transforming the landscape of the industrial sector at a precedential level by connecting people, processes, and machines in real-time. It represents the means for a new pathway to achieve innovative, dynamic competitive advantages, deliver unique customers’ values, and sustain critical relationships. Thus, success in a constantly changing environment is governed by the ability of an organization to revolutionize their business models, deliver innovative solutions, and capture values from big data analytics and insights. Businesses need to re-strategize operations and develop extra capabilities to cope with the necessity for additional flexibility and agility. The traditional “command and control” leadership style is structurally and operationally incompatible with the digital era. In this paper, the authors discuss how transformational leaders can act as a glue in the social, organizational context, which is crucial to enable the workforce and develop a psychological attachment to the digital vision.Keywords: Internet of things, strategy, change leadership, dynamic competitive advantage, digital transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7072173 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks
Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta
Abstract:
This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.Keywords: GEO, ns2, Proactive TCP, SACK, Vegas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14352172 A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network
Authors: M. Padmavathi, R. M. Suresh
Abstract:
Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.
Keywords: Ant Colony Optimization (ACO), Bit Torrent, Download time, Peer-to-Peer (P2P) network, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25962171 Drivers of Digital Product Innovation in Firms: An Empirical Study of Technological, Organizational, and Environmental Factors
Authors: Anne Theresa Eidhoff, Sarah E. Stief, Markus Voeth, Sarah Gundlach
Abstract:
With digitalization increasingly changing the rules of competition, firms face the need to adapt and assimilate digital technologies in order to remain competitive. Firms can choose from various possibilities to integrate digital technologies including the option to embed digital technologies aiming to innovate products or to develop digital products. However, the question of which specific factors influence a firm’s decision to pursue digital product innovation remains unanswered in research. By adopting the Technology-Organization-Environment (TOE)-framework we have designed a qualitative exploratory study including eleven German practitioners to investigate relevant contingency factors. Our results indicate that the most critical factors for a company’s decision to pursue digital product innovation can be found in the technological and environmental dimensions, namely customers, competitive pressure, technological change, as well as digitalization fit.Keywords: Digital innovation, digitalization, product innovation, TOE-framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20692170 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17082169 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582168 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.
Keywords: Cognitive decline, functional connectivity, MCI, MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24202167 Hydrogen Integration in Petrochemical Complexes, Using Modified Automated Targeting Method
Authors: M. Shariati, N. Tahouni, A. Khoshgard, M.H. Panjeshahi
Abstract:
Owing to extensive use of hydrogen in refining or petrochemical units, it is essential to manage hydrogen network in order to make the most efficient utilization of hydrogen. On the other hand, hydrogen is an important byproduct not properly used through petrochemical complexes and mostly sent to the fuel system. A few works have been reported in literature to improve hydrogen network for petrochemical complexes. In this study a comprehensive analysis is carried out on petrochemical units using a modified automated targeting technique which is applied to determine the minimum hydrogen consumption. Having applied the modified targeting method in two petrochemical cases, the results showed a significant reduction in required fresh hydrogen.Keywords: Automated targeting, Hydrogen network, Petrochemical, Process integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16752166 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal
Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga
Abstract:
In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.
Keywords: OFDM, TWTA, nonlinear distortion, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842165 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network
Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo
Abstract:
Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.
Keywords: Power quality, remote monitoring, distributed automation system, economic evaluation, LV network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11452164 A Brain Inspired Approach for Multi-View Patterns Identification
Authors: Yee Ling Boo, Damminda Alahakoon
Abstract:
Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.
Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472163 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System
Authors: K. Ranjani, M. Raja, B. Anitha
Abstract:
In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.
Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31672162 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques
Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici
Abstract:
Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17342161 Location Management in Cellular Networks
Authors: Bhavneet Sidhu, Hardeep Singh
Abstract:
Cellular networks provide voice and data services to the users with mobility. To deliver services to the mobile users, the cellular network is capable of tracking the locations of the users, and allowing user movement during the conversations. These capabilities are achieved by the location management. Location management in mobile communication systems is concerned with those network functions necessary to allow the users to be reached wherever they are in the network coverage area. In a cellular network, a service coverage area is divided into smaller areas of hexagonal shape, referred to as cells. The cellular concept was introduced to reuse the radio frequency. Continued expansion of cellular networks, coupled with an increasingly restricted mobile spectrum, has established the reduction of communication overhead as a highly important issue. Much of this traffic is used in determining the precise location of individual users when relaying calls, with the field of location management aiming to reduce this overhead through prediction of user location. This paper describes and compares various location management schemes in the cellular networks.Keywords: Cellular Networks, Location Area, MobilityManagement, Paging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40352160 Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater
Authors: Balasubramanian P, Ligy Philip, S. Murty Bhallamudi
Abstract:
In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.Keywords: Chloroform, Cometabolic biodegradation, Competitive inhibition, Extended Haldane model, Pharmaceuticalindustry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27992159 Heuristic Continuous-time Associative Memories
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14072158 A Taxonomy of Internal Attacks in Wireless Sensor Network
Authors: Muhammad R Ahmed, Xu Huang, Dharmendra Sharma
Abstract:
Developments in communication technologies especially in wireless have enabled the progress of low-cost and lowpower wireless sensor networks (WSNs). The features of such WSN are holding minimal energy, weak computational capabilities, wireless communication and an open-medium nature where sensors are deployed. WSN is underpinned by application driven such as military applications, the health sector, etc. Due to the intrinsic nature of the network and application scenario, WSNs are vulnerable to many attacks externally and internally. In this paper we have focused on the types of internal attacks of WSNs based on OSI model and discussed some security requirements, characterizers and challenges of WSNs, by which to contribute to the WSN-s security research.Keywords: Wireless sensor network, internal attacks, security, OSI model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30342157 Influence of Distributed Generation on Congestion and LMP in Competitive Electricity Market
Authors: Durga Gautam, Mithulananthan Nadarajah
Abstract:
This paper presents the influence of distributed generation (DG) on congestion and locational marginal price (LMP) in an optimal power flow (OPF) based wholesale electricity market. The problem of optimal placement to manage congestion and reduce LMP is formulated for the objective of social welfare maximization. From competitive electricity market standpoint, DGs have great value when they reduce load in particular locations and at particular times when feeders are heavily loaded. The paper lies on the groundwork that solution to optimal mix of generation and transmission resources can be achieved by addressing congestion and corresponding LMP. Obtained as lagrangian multiplier associated with active power flow equation for each node, LMP gives the short run marginal cost (SRMC) of electricity. Specific grid locations are examined to study the influence of DG penetration on congestion and corresponding shadow prices. The influence of DG on congestion and locational marginal prices has been demonstrated in a modified IEEE 14 bus test system.
Keywords: Congestion management, distributed generation, electricity market, locational marginal price, optimal power flow, social welfare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29272156 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management
Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet
Abstract:
This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.
Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16952155 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21802154 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny
Abstract:
People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.
Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202153 Dynamic Admission Control Based on Effective Demand for Next Generation Wireless Networks
Authors: Somenath Mukherjee, Rajdeep Ray, Raj Kumar Samanta, Mofazzal H. Khondekar, Gautam Sanyal
Abstract:
In next generation wireless networks (i.e., 4G and beyond), one of the main objectives is to ensure highest level of customer satisfaction in terms of data transfer speed, decrease in cost and delay, non-rejection and no drop of calls, availability of ‘always-on’ connectivity and services, continuity of connected services, hastle-free roaming in addition to the convenience of use of network services from anywhere and anytime. To take care of these requirements effectively, internet service providers (ISPs) and network planners have to go for major capacity enhancement of network resources and at the same time these resources are to be used effectively and efficiently to reduce cost and to increase revenue. In this work, the effective bandwidth available in a Mobile Switching Center (MSC) of a wireless network providing multi-class multimedia services is analyzed. Bandwidth requirement of the users for a customized Quality of Service (QoS) is estimated. The findings of the QoS estimation are applied for the capacity planning and admission control of the multi-class traffic flows coming into the MSC.
Keywords: Next generation wireless network, mobile switching center, multi-class traffic, quality of service, admission control, effective bandwidth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851