
 

 

 
Abstract—Brain functional networks based on resting-state EEG 

data were compared between patients with mild Alzheimer’s disease 
(mAD) and matched patients with amnestic subtype of mild cognitive 
impairment (aMCI). We integrated the time–frequency cross mutual 
information (TFCMI) method to estimate the EEG functional 
connectivity between cortical regions and the network analysis based 
on graph theory to further investigate the alterations of functional 
networks in mAD compared with aMCI group. We aimed at 
investigating the changes of network integrity, local clustering, 
information processing efficiency, and fault tolerance in mAD brain 
networks for different frequency bands based on several topological 
properties, including degree, strength, clustering coefficient, shortest 
path length, and efficiency. Results showed that the disruptions of 
network integrity and reductions of network efficiency in mAD 
characterized by lower degree, decreased clustering coefficient, higher 
shortest path length, and reduced global and local efficiencies in the 
delta, theta, beta2, and gamma bands were evident. The significant 
changes in network organization can be used in assisting 
discrimination of mAD from aMCI in clinical. 
 

Keywords—EEG, functional connectivity, graph theory, TFCMI.  

I. INTRODUCTION 

LZHEIMER’S DISEASE (AD) is one of the most 
common neurodegenerative diseases. Patients with AD 

exhibit impairments in multiple cognitive domains, such as 
memory, executive functions, attention, visuospatial skill, and 
verbal ability. On the other hand, mild cognitive impairment 
(MCI) was regarded as an intermediate state of cognitive 
function between normal aging and AD [1]. Previous studies 
reported that MCI, especially amnestic subtype MCI (aMCI), 
may convert to AD at about 30-50% within 3-5 years [2], [3]. 
Therefore, early diagnosis of MCI and discrimination from 
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mild AD (mAD) can be helpful to improve disease progression 
following therapeutical interventions.  

 Previous studies reported that AD and aMCI were not only 
associated with regional alterations in brain activity, but also 
with abnormal functional integration between different brain 
regions, suggesting AD or aMCI as a disconnection syndrome 
[4], [5]. Therefore, functional connectivity analysis can be used 
to provide the discriminative features for investigating the 
differences between mAD and aMCI. 

Functional connectivity can be measured by estimating 
synchrony of the electroencephography (EEG) signal 
oscillations between cortical regions. EEG oscillations are 
generated locally in different brain regions and mediate 
coordinated interactions within and between different neural 
systems to form functional networks. Many researchers have 
used coherence analysis to measure cortical functional 
connections. However, the coherence method only measures 
linear dependency between neural signals and may be 
insufficient for studying complex and nonlinear brain dynamics 
[6]. The coherence method can be problematic if the signals are 
contaminated by noise or the oscillatory frequency band is not 
carefully defined [7], [8]. The time–frequency cross mutual 
information (TFCMI) method offers an alternative solution [9], 
which calculates the mutual information between two temporal 
power sequences within a specific band, and serves as a 
statistical measure of linear and nonlinear dependencies 
between cortical regions [10]. 

Recent neurophysiological and neuroimaging studies have 
used advanced graph theoretical network analysis approaches 
to demonstrate that AD patients have disruptive neuronal 
integrity in large-scale structural and functional brain systems 
during cognitive tasks and at resting-state [11], [12]. Studies on 
functional network derived from EEG and functional magnetic 
resonance imaging also reported that AD patients presented 
sparser and less efficient organization of functional networks 
compared with healthy controls [11], [12].  

In the present study, we integrated the TFCMI method to 
estimate the EEG functional connectivity between cortical 
regions and the network analysis based on graph theory to 
further investigate the difference of functional networks 
between aMCI and mAD groups in their global and local 
topological properties, including degree, strength, clustering 
coefficient, shortest path length, and efficiency, for six different 
frequency bands. 
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II. MATERIALS AND METHODS 

A. Participants 

This study received prior approval from the Institutional 
Review Board of Taipei City Hospital. We retrospectively 
enrolled aMCI and mAD patients with EEG examinations. 
Each subject first visit the Department of Neurology in Taipei 
City Hospital during 2007–2011. Their clinical data regarding 
dementia and cognitive decline were collected, including 
clinical histories, neurological examinations, neuroimaging 
studies (CT or MRI), neuropsychological interview, 
mini-mental state examination (MMSE) [13], and clinical 
dementia rating (CDR) [14]. All recorded clinical data was 
reviewed to exclude participants with (1) evidence of other 
neurological or psychiatric diseases characterized by the 
cognitive impairment; (2) uncontrolled or complicated 
systemic diseases or traumatic brain injuries; and (3) the mixed 
dementia that can lead to atypical AD symptoms.  

The diagnosis of aMCI met the Petersen criteria [15]. The 
inclusion criteria for aMCI participants in this study were: (1) 
CDR score of 0.5; (2) MMSE score of 20–25; and (3) memory 
decline in the absence of dementia or significant functional 
loss. AD was diagnosed according to NINCDS-ADRDA 
criteria for “probable AD” [16]. The inclusion criteria for mAD 
were (1) CDR score of 1; and (2) MMSE score less than 25.  

Finally, the clinical data and EEG of 24 aMCI and 13 mAD 
were enrolled in this study for the subsequent analysis. Table I 
summarizes the demographic features and clinical data of study 
groups. No significant age and gender differences were 
observed between the aMCI and mAD groups. 

B. EEG Recordings and Preprocessing 

The EEG data during resting state were recorded from 19 
scalp electrodes using a Nihon-Kohden EEG-1000 system 
(Nihon-Kohden Inc., Tokyo, Japan) at a sampling rate of 200 
Hz and impedance of less than 7 kΩ at each electrode. The 19 
electrodes were positioned according to the international 10–20 
system including Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 
F8, T3, T4, T5, T6, Fz, Cz, and Pz. All the EEG activities were 
referenced to the average signal of the two linked mastoid 
electrodes and bandpass filtered between 1 and 40 Hz. Both 
eyes-closed and eyes-opened conditions were recorded for 
20–30 s alternately to a total of 4 minutes for each condition. 
Subjects remained awake and alert during the recording 
without increased attentional demand or cognitive load. Only 
the eyes-closed EEG data were extracted and segmented into 
approximate 110 consecutive epochs of 2 s in the present study.  

To eliminate the ocular, muscular, and other types of 
physiological artifacts, we first reviewed each epoch and 
manually discarded the bad epochs with aberrant waveforms or 
large signal drifts. The averaged rejection rates of epochs are 
24.90 9.94% for aMCI and 24.43 10.87% for mAD group. 
Second, the algorithm of independent component analysis was 
utilized to decompose the EEG signals into multiple 
independent components, allowing artifacts to be easily 
detected and rejected [17]. The rejection criteria of independent 
components were that: (1) the scalp voltage map presents a 

far-frontal projection which is a typical artifact of eye 
movement; (2) the map is marginally localized with 
high-frequency powers; or (3) the component activities 
originated from few specific epochs and did not consistently 
distribute across epochs. The number of rejected components 
are 3.38 1.69% for aMCI and 3.06 1.29% for mAD group.  

Finally, approximate 80 artifact-free epochs for each 
participant were used for further analysis. 

 
TABLE I 

DEMOGRAPHIC FEATURES AND CLINICAL DATA OF STUDY GROUPS 

 aMCI (n = 24) mAD (n = 13) P value 

Agea 81.13 3.95 82.62 4.81 0.32 

Sexb(male/female) 6/18 3/10 0.79 

MMSE 20.79 4.80 14.31 5.01 0.0004 

CDR 0.5 1.0  
aContinuous data are expressed as mean   standard deviation and were 

tested by the Kruskal–Wallis test. 
bSex data were tested by the Pearson chi-square test. 
MMSE, mini-mental state examination; CDR, clinical dementia rating. 

C. Source Signal Estimation 

In this study, the signals of cortical source were estimated 
from the scalp EEG data by two steps, namely, the forward 
model followed by an inverse operation. The forward head 
model was constructed based on a symmetric boundary element 
using OpenMEEG package (http://openmeeg.github.io/) [18]. 
To compute the inverse operator, minimum-norm estimation 
(MNE) with depth-weighting approach was used to obtain the 
source signals along the entire cortical surface of the EEG data 
[19]. The specific parameters are given as follows: (a) the 
source orientations were set to be unconstrained on the cortical 
surface; (b) a depth weighting algorithm was used to 
compensate for the biased calculations of superficial sources 
[20]; and (c) a regularization parameter, λ2 = 0.1, was used to 
reduce numerical instability of the MNE and obtain a spatially 
smoothed solution [7]. The MNE analysis was performed using 
Brainstorm software (http://neuroimage.usc.edu/brainstorm) 
[21]. 

Cortical surface maps of source activity in each subject were 
displayed on the standard Colin27 anatomical images in 
Montreal Neurological Institute (MNI) space [22]. We further 
extracted the time-varying current strengths in 62 cortical 
surface regions covering entire cerebral cortex for each epoch 
based on a Mindboggle atlas (Table II) [23]. 

D. Brain Network Construction 

The functional brain network for each participant was 
represented by a 6262 graph consisting of 62 nodes (cortical 
regions) and edges (functional connectivity between regions). 
The functional connectivity between cortical surface regions 
was measured using the time-frequency cross mutual 
information (TFCMI) analysis, which is more resistant to 
reference selection and noise interference than the coherence 
method [9], [24].  
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CORTICAL SURFACE REGIONS AND THEIR ABBREVIATIONS (ALL FOR BOTH 

HEMISPHERES) 

Type Name Label Type Name Label 

PF Medial orbitofrontal MOF PF Lateral orbitofrontal LOF 

PF Parsorbitalis PO F Superior frontal SF 

F 
Caudal middle 
frontal 

CMF F 
Rostral middle 
frontal 

RMF 

F Parsopercularis  POP F Parstrangularis  PT 

C Paracentral  paraC C Precentral  preC 

C Postcentral postC P Precuneus  precun 

P Surperior parietal  SP P Inferior parietal IP 

P Supramarginal  SM T Superior temporal  ST 

T Middle temporal MT T Inferior temporal IT 

T Transverse temporal TT T Insula  insula 

T Parahippocampus paraH T Entrohinal  EC 

T Fusiform  fusiform L 
Rostral anterior 
cingulate 

RAC 

L 
Caudal anterior 
cingulate 

CAC L Posterior cingulate PC 

L Isthmus cingulate IC O Cuneus  cuneus

O Lingual lingual O Pericalcarine periCal

O Lateral occipital LO    

PF, prefrontal; F, frontal; C, central; P, parietal; T, temporal; L, limbic; O, 
occipital. 

 
The TFCMI analysis consists of two processing steps, i.e. the 

wavelet transformation and mutual information calculation. 
First, the surface source signal in each region and each epoch 
was transformed into the time-frequency domain using the 
Morlet wavelet transformation to obtain temporal spectral map 
(Fig. 1 (b)) [9]. The frequency resolution was 1 Hz and 
temporal resolution was 5 ms. Six sets of time-frequency maps 
encompassing the delta (1-4 Hz), theta (5-7 Hz), alpha (8-12 
Hz), beta1 (13-20 Hz), beta2 (21-30 Hz), and gamma (31-40 
Hz) activities were created separately. The power across 
selected frequency bands in each cortical region was averaged 
to produce a dynamic power curve (Fig. 1 (c)). The temporal 
series of averaged power signals were then used to compute the 
cross mutual information (CMI) between any two cortical 
regions in each epoch [9]. Denote the averaged power signals at 
the ith region by a random variable, Fi, and its probability 
density function (PDF) by p(Fi). 

 

       ,,ln,
40

1
,,,,,,, 




b

bjbibjbibjbiji FpFpFFpFFpCMI          (1) 

 
where b=1,2,…,40 represents the index of sampling bins used 
to construct the approximated PDF and joint PDF. Finally, the 
functional connections in each epoch and each frequency band 
were generated by a pair of regions, creating a 6262 TFCMI 
map (Fig. 1 (d)). The TFCMI values were normalized so that 
the maximal values equal one. A schematic diagram for the 
construction of a functional network is shown in Fig. 1.  

E. Network Analysis  

The 6262 TFCMI maps for each selected frequency band 
were first binarized by applying threshold T to the weighted 
edges. 



 


otherwise      ,0

 if  ,1 TCMI
e i,j

ij
                                  (2) 

 
where eij is referred to as the effective connection between 
cortical regions i and j. We set thresholds T equal to the mean 
value of whole TFCMI map added by one standard deviation 
for all participants. The threshold for each selected band in this 
study was 0.52 in delta, 0.41 in theta, 0.34 in alpha, 0.27 in 
beta1, 0.21 in beta2, and 0.18 in gamma, respectively. 

 

 

Fig. 1 Schematic diagram of the functional network construction. (a) 
The EEG source signals for 62 cortical surface regions of each epoch. 

(b) The source signal were processed using the Morlet wavelet 
transformation to obtain time–frequency power maps within the 
selected frequency band (beta1, 13–20 Hz shown here), in which 

colors indicate power amplitude in an arbitrary unit (a. u.). (c) The 
averaged power signal for each region was created by averaging the 
individual time–frequency maps across selected frequency band. (d) 

The 6262 TFCMI map was obtained by calculating the cross mutual 
information from the averaged powers between any two channels 
 
Network organization can be estimated by topological 

properties based on graph theory. Five regional properties, 
including nodal degree (ki), nodal strength (si), nodal clustering 
coefficient (ci), nodal shortest path length (li), and nodal 
efficiency (Enodal(i)), were computed for each node. The nodal 
degree is the number of functionally connected neighbors to a 
node; the nodal strength represents the functional synchrony 

 II TABLE
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with other nodes for a node; the nodal clustering coefficient is 
the probability of interconnectivity between neighboring nodes 
in a network; the nodal shortest path length represents the 
separation between any pair of nodes in a network; the nodal 
efficiency quantifies the importance of a node for 
communication within the network [25]-[29]. The topological 
properties were calculated as follows: 
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where n is the number of nodes, N is the set of full brain 
network, and dij is the minimal number of edges that must be 
traversed to form a connection between nodes i and j.  

Six global properties, degree (K), strength (S), clustering 
coefficient (C), shortest path length (L), global efficiency 
(Eglobal), and local efficiency (Elocal), were used to evaluate 
whole-network structure [26], [27]. The global efficiency of a 
network represents the ability of transmitting and processing 
parallel information in a network. All global properties are 
calculated as: 
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where the subgraph Ni is a set, consisting of the direct 
neighboring nodes of node i. Note that the node i is not an 
element of subgraph Ni. Therefore, the local efficiency can be 

considered to be a measure of the fault tolerance for a network; 
that is, how well the information can be exchanged within each 
subgraph when the index node is eliminated.  

F. Statistics 

Global properties were separately examined by two-sample t 
test to decide whether the means of these measurements were 
significantly different (p < 0.05) between aMCI and mAD 
groups for each selected frequency band. The nodal (regional) 
properties were separately examined region-by-region using 
two-sample t test to investigate the significant difference (p < 
0.05) between aMCI and mAD groups. For the statistics in 
nodal properties, the p values were corrected using the false 
discovery rate (FDR) method for multiple comparisons across 
62 cortical regions [30]. 

III. RESULTS AND DISCUSSIONS 

A. Global Network Properties 

The 6 global network properties in each selected frequency 
band for aMCI and mAD groups are displayed in Fig. 2. Results 
showed that the brain functional networks in mAD exhibited 
altered network architecture involving the delta, theta, beta2, 
and gamma bands compared with that in aMCI. Generally, the 
functional networks in mAD were sparser (lower degree and 
clustering coefficient in Figs. 2 (a) and (c), less efficient in 
information transmission (higher shortest path length in Fig. 2 
(d) and lower global efficiency in Fig. 2 (e) and), and with 
lower tolerance to resist abnormalities (lower local efficiency 
in Fig. 2 (f)) than brain networks in aMCI. The declines in 
global network properties supported the previous findings that 
AD exhibited disrupted distant brain functional connectivity 
and therefore reduce the integrity of whole-brain network [31], 
[32]. 

B. Nodal Network Properties 

The results of significant differences (p < 0.05 with FDR 
correction) in nodal network properties between mAD and 
aMCI groups are separately displayed in Figs. 3-6. Due to the 
space limitation, only the frequency bands with significant 
differences in nodal properties were depicted.  

Bilateral medial orbitofrontal cortices (MOF) exhibited 
significant increases in nodal strength in the theta and delta 
bands for mAD (Figs. 3 (a) and (b)). Theta-frequency activity, 
which arises from the hippocampus and oscillates with medial 
frontal and cingulate cortex, is associated with memory 
functions [33], [34]. This result suggested that the mAD 
patients have stronger functional connectivity related to the 
bilateral medial orbitofrontal regions in the low-frequency 
fluctuations, which may be compensation to the disruption to 
the hippocampus-related connectivity. In contrast, the right 
parahippocampus exhibited significantly reduced nodal 
strength in the delta band for mAD (Fig. 3 (a)). The decline of 
the nodal strength in parahippocampus gyrus may suggest the 
impairment of memory encoding and retrieval in mAD patients. 

 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:8, No:11, 2014 

787International Scholarly and Scientific Research & Innovation 8(11) 2014 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

11
, 2

01
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
97

40
.p

df



 

 

 

Fig. 2 The global network properties, (a) degree, (b) strength, (c) 
clustering coefficient, (d) shortest path length, (e) global efficiency, 
and (f) local efficiency, in each frequency band for aMCI and mAD 

groups. *, p < 0.05; **, p < 0.005 
 

 

Fig. 3 The cortical regions with significant changes in nodal strength 
for mAD compared with aMCI in the (a) delta, (b) theta, and (c) 

gamma bands. The plots are displayed from left (left column) and right 
(right column) lateral views 

 

 

Fig. 4 The cortical regions with significant decreases in nodal 
clustering coefficient for mAD compared with aMCI in the (a) delta 
and (b) beta2 bands. The plots are displayed from left (left column) 

and right (right column) lateral views 
 
Significant increases in nodal shortest path length for mAD 

were found in several central regions (preC and postC), right 
middle frontal (CMF), and right inferior frontal regions (PT and 
PO) in addition to the bilateral parietal and occipital regions in 
the higher frequency bands, namely, the beta2 and gamma 
bands (Fig. 5). The increased nodal shortest path length of a 
node indicated larger separations between it and other nodes in 
the network, suggesting that the costs for information 
transmission and integration were expensive in mAD compared 
with aMCI. 

 

 

Fig. 5 The cortical regions with significant increases in nodal shortest 
path length for mAD compared with aMCI in the (a) beta2 and (b) 

gamma bands. The plots are displayed from left (left column) and right 
(right column) lateral views 

 
In the results of nodal efficiency, significant alterations 

between mAD and aMCI groups were observed in different 
cortical regions in the delta, theta, beta2, and gamma bands (Fig. 
6). In the low-frequency delta band, regions with significantly 
reduced nodal efficiency in mAD mainly distributed in the right 
hemisphere, covering right inferior frontal (POP, PT, and PO), 
temporal (paraH, insula, ST, TT, and EC), parietal, and 
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occipital regions. The delta waves of EEG have been reported 
to be characterized by right lateralization focused on the 
thalamus-connected frontal, parietal and temporal cortices [35]. 
The distributed regions with significantly decreased nodal 
efficiency lateralized to the right hemisphere in the delta band 
may reflect the disrupted connections between the thalamus 
and multiple cortical regions. In the high-frequency beta2 band, 
regions with significantly reduced nodal efficiency in mAD 
mainly located in bilateral parietal, temporal, occipital regions, 
and right frontal regions. Two limbic regions (PC and IC) also 
exhibited significant reduction of nodal efficiency in the beta2 
band for mAD. 

 

 

Fig. 6 The cortical regions with significant decreases in nodal 
efficiency for mAD compared with aMCI in the (a) delta, (b) theta, (c) 

beta2, and (d) gamma bands. The plots are displayed from left (left 
column) and right (right column) lateral views 

IV. CONCLUSION 

A question central to this study is whether mAD exhibited 
alterations in functional network organization compared with 
aMCI. In the comparison of the topology of resting-state 
cortical networks between two groups, the disruptions of 
network integrity and reductions of network efficiency in mAD 
characterized by lower degree, decreased clustering coefficient, 
higher shortest path length, and reduced global and local 
efficiencies in the delta, theta, beta2, and gamma bands are 
evident. 
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