Search results for: low temperature heat source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4392

Search results for: low temperature heat source

3072 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: Fire propagation, flame contour, pantry fire, soot flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
3071 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh

Abstract:

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
3070 Numerical and Experimental Investigations on Jet Impingement Cooling

Authors: Arun Jacob, Leena R., Krishnakumar T.S., Jose Prakash M.

Abstract:

Effective cooling of electronic equipment has emerged as a challenging and constraining problem of the new century. In the present work the feasibility and effectiveness of jet impingement cooling on electronics were investigated numerically and experimentally. Studies have been conducted to see the effect of the geometrical parameters such as jet diameter (D), jet to target spacing (Z) and ratio of jet spacing to jet diameter (Z/D) on the heat transfer characteristics. The values of Reynolds numbers considered are in the range 7000 to 42000. The results obtained from the numerical studies are validated by conducting experiments. From the studies it is found that the optimum value of Z/D ratio is 5. For a given Reynolds number, the Nusselt number increases by about 28% if the diameter of the nozzle is increased from 1mm to 2mm. Correlations are proposed for Nusselt number in terms of Reynolds number and these are valid for air as the cooling medium.

Keywords: CFD, heat transfer coefficient, Nusselt number, ratio of jet diameter to jet spacing (Z/D), Reynolds number, turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
3069 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
3068 Adaptive Thermal Comfort Model for Air-Conditioned Lecture Halls in Malaysia

Authors: B. T. Chew, S. N. Kazi, A. Amiri

Abstract:

This paper presents an adaptive thermal comfort model study in the tropical country of Malaysia. A number of researchers have been interested in applying the adaptive thermal comfort model to different climates throughout the world, but so far no study has been performed in Malaysia. For the use as a thermal comfort model, which better applies to hot and humid climates, the adaptive thermal comfort model was developed as part of this research by using the collected results from a large field study in six lecture halls with 178 students. The relationship between the operative temperature and behavioral adaptations was determined. In the developed adaptive model, the acceptable indoor neutral temperatures lay within the range of 23.9-26.0C, with outdoor temperatures ranging between 27.0-34.6C. The most comfortable temperature for students in lecture hall was 25.7C.

Keywords: Hot and humid, Lecture halls, Neutral temperature, Adaptive thermal comfort model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
3067 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

Authors: A. T. Eswara

Abstract:

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
3066 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
3065 Climate Change and the Problem of Malaria in Armenia

Authors: Ara Sh. Keshishyan, Dezdemonia V. Manukyan, Gayane G. Melik-Andreasyan, Maria V. Harutyunova, Karine V. Harutyunova

Abstract:

The data presented in this work show that in Armenia a rise of air temperature is expected in the season, and annual terms. As a result of the noted increase in temperature, a significant growth of vulnerability of the territory of Armenia in relation to malaria is expected. Zoning by the risk of renewed malaria transmission has been performed.

Keywords: Armenia, climate change, malaria, zoning of Armenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
3064 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: Polymerase chain reaction, thermal cycles, capillary, TE cooler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
3063 Design and Analysis of a Solar Refrigeration System with a Rotating Generator

Authors: K. Bouhadef, S. Chikh, A. Boumedien, A. Benabdesselam

Abstract:

A solar refrigeration system based on the adsorptiondesorption phenomena is designed and analyzed. An annular tubular generator filled with silica gel adsorbent and with a perforated inner cylinder is integrated within a flat solar collector. The working fluid in the refrigeration cycle is water. The thermodynamic analysis and because of the temperature level that could be attained with a flat solar collector it is required that the system operates under vacuum conditions. In order to enhance the performance of the system and to get uniform temperature in the silica gel and higher desorbed mass, an apparatus for rotation of the generator is incorporated in the system. Testing is carried out and measurements are taken on the designed installation. The effect of rotation is checked on the temperature distribution and on the performance of this machine and compared to the flat solar collector with fixed generator.

Keywords: Refrigeration cycle, solar energy, rotating collector, adsorption, silica gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
3062 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does.

In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: Energy-saving, VRF, GHP, EHP, Air Conditioning System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
3061 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
3060 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
3059 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
3058 A Retrospective Cohort Study on an Outbreak of Gastroenteritis Linked to a Buffet Lunch Served during a Conference in Accra

Authors: Benjamin Osei Tutu, Sharon Annison

Abstract:

On 21st November, 2016, an outbreak of foodborne illness occurred after a buffet lunch served during a stakeholders’ consultation meeting held in Accra. An investigation was conducted to characterise the affected people, determine the etiologic food, the source of contamination and the etiologic agent and to implement appropriate public health measures to prevent future occurrences. A retrospective cohort study was conducted via telephone interviews, using a structured questionnaire developed from the buffet menu. A case was defined as any person suffering from symptoms of foodborne illness e.g. diarrhoea and/or abdominal cramps after eating food served during the stakeholder consultation meeting in Accra on 21st November, 2016. The exposure status of all the members of the cohort was assessed by taking the food history of each respondent during the telephone interview. The data obtained was analysed using Epi Info 7. An environmental risk assessment was conducted to ascertain the source of the food contamination. Risks of foodborne infection from the foods eaten were determined using attack rates and odds ratios. Data was obtained from 54 people who consumed food served during the stakeholders’ meeting. Out of this population, 44 people reported with symptoms of food poisoning representing 81.45% (overall attack rate). The peak incubation period was seven hours with a minimum and maximum incubation periods of four and 17 hours, respectively. The commonly reported symptoms were diarrhoea (97.73%, 43/44), vomiting (84.09%, 37/44) and abdominal cramps (75.00%, 33/44). From the incubation period, duration of illness and the symptoms, toxin-mediated food poisoning was suspected. The environmental risk assessment of the implicated catering facility indicated a lack of time/temperature control, inadequate knowledge on food safety among workers and sanitation issues. Limited number of food samples was received for microbiological analysis. Multivariate analysis indicated that illness was significantly associated with the consumption of the snacks served (OR 14.78, P < 0.001). No stool and blood or samples of etiologic food were available for organism isolation; however, the suspected etiologic agent was Staphylococcus aureus or Clostridium perfringens. The outbreak could probably be due to the consumption of unwholesome snack (tuna sandwich or chicken. The contamination and/or growth of the etiologic agent in the snack may be due to the breakdown in cleanliness, time/temperature control and good food handling practices. Training of food handlers in basic food hygiene and safety is recommended.

Keywords: Accra, buffet, C. perfringens, cohort study, food poisoning, gastroenteritis, office workers, Staphylococcus aureus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
3057 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
3056 Effect of CW Laser Annealing on Silicon Surface for Application of Power Device

Authors: Satoru Kaneko, Takeshi Ito, Kensuke Akiyama, Manabu Yasui, Chihiro Kato, Satomi Tanaka, Yasuo Hirabayashi, Takeshi Ozawa, Akira Matsuno, Takashi Nire, Hiroshi Funakubo, Mamoru Yoshimoto

Abstract:

As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.

Keywords: laser, annealing, silicon, recrystallization, thermal distribution, resistivity, finite element method, absorption, melting point, latent heat of fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888
3055 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra

Abstract:

This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: Human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
3054 Low resistivity Hf/Al/Ni/Au Ohmic Contact Scheme to n-Type GaN

Authors: Y. Liu, M. K. Bera, L. M. Kyaw, G. Q. Lo, E. F. Chor

Abstract:

The electrical and structural properties of Hf/Al/Ni/Au (20/100/25/50 nm) ohmic contact to n-GaN are reported in this study. Specific contact resistivities of Hf/Al/Ni/Au based contacts have been investigated as a function of annealing temperature and achieve the lowest value of 1.09´10-6 Ω·cm2 after annealing at 650 oC in vacuum. A detailed mechanism of ohmic contact formation is discussed. By using different chemical analyses, it is anticipated that the formation of Hf-Al-N alloy might be responsible to form low temperature ohmic contacts for the Hf-based scheme to n-GaN.

Keywords: Gallium nitride, ohmic contact, Hafnium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
3053 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions is described. An experimental set-up is performed to aid this investigation. The experimental tests have showed that the vibration generation in the walls and floors are directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: Vibration transmission, Vibration Reduction Index, Impact excitation, building acoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
3052 Tin (II) Chloride a Suitable Wetting Agent for AA1200 - SiC Composites

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, A. S. Abdulmunim

Abstract:

SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.

Keywords: Al-SIC, Aluminum, Composites, Intermetallic, Reinforcement, Tensile Strength, Wetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587
3051 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam

Authors: T. M. Ismail, M. Abd El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.

Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
3050 Competitiveness and Value Creation of Tourism Sector: In the Case of 10 ASEAN Economies

Authors: Apirada Chinprateep

Abstract:

The ASEAN Economic Community (AEC) is the goal of regional economic integration by 2015. In the region, tourism is an activity that is important, especially as a source of foreign currency, a source of employment creation and a source of income bringing to the region. Given the complexity of the issues entailing the concept of sustainable tourism, this paper tries to assess tourism sustainability with the ASEAN, based on a number of quantitative indicators for all the ten economies, Thailand, Myanmar, Laos, Vietnam, Malaysia, Singapore, Indonesia, Philippines, Cambodia, and Brunei. The methodological framework will provide a number of benchmarks of tourism activities in these countries. They include identification of the dimensions; for example, economic, socio-ecologic, infrastructure and indicators, method of scaling, chart representation and evaluation on Asian countries. This specification shows that a similar level of tourism activity might introduce different implementation in the tourism activity and might have different consequences for the socioecological environment and sustainability. The heterogeneity of developing countries exposed briefly here would be useful to detect and prepare for coping with the main problems of each country in their tourism activities, as well as competitiveness and value creation of tourism for ASEAN economic community, and will compare with other parts of the world.

Keywords: AEC, ASEAN, sustainable, tourism, competitiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
3049 An Overview on the Effectiveness of Brand Mascot and Celebrity Endorsement

Authors: Isari Pairoa, Proud Arunrangsiwed

Abstract:

Celebrity and brand mascot endorsement have been explored for more than three decades. Both endorsers can effectively transfer their reputation to corporate image and can influence the customers to purchase the product. However, there was little known about the mediators between the level of endorsement and its effect on buying behavior. The objective of the current study is to identify the gab of the previous studies and to seek possible mediators. It was found that consumer’s memory and identification are the mediators, of source credibility and endorsement effect. A future study should confirm the model of endorsement, which was established in the current study.

Keywords: Product endorsement, memory, identification theory, source credibility, unintentional effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
3048 Determination of Recrystallization Temperature of Varying Degrees Formed Aluminium, by DMTA Technique

Authors: Zsolt Dugár, Péter Barkóczy, Gábor Béres, Dávid Kis, Attila Bata, Tamás Dugár, Zoltán Weltsch

Abstract:

This study is about the structural transformations of aluminium examining with the Dynamic Mechanical Thermal Analyzer (DMTA). It is a faster and simpler measuring method to make consequence about the metal’s structural transformations. The device measures the changing of the mechanical characteristics depending on the heating rate, and concludes certain transformations. This measuring method fast and shows clean-cut results comparing the conventional ways. Applying polymer measuring devices for metal investigations is not widespread method. One of the adaptable ways is shown in this study. The article compares the results of the small specimen test and the DMTA method, considering the temperature and the forming dependence of recrystallization temperature.

Keywords: DMTA, recrystallization, cold forming, rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
3047 Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

Authors: Jae-Kyung LEE, Byung-Hak CHO, Kyung-Nam Jang, Sun-Chul Jung, Ki-Yong OH, Joon-Young PARK, Jong-Seog Kim

Abstract:

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Keywords: Autonomous robot, Cable Inspection, Indenter, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
3046 Sous Vide Packaging Technology Application for Salad with Meat in Mayonnaise Shelf Life Extension

Authors: Vita Levkane, Sandra Muizniece-Brasava, Lija Dukalska

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of sous vide packaging during the storage time of salad with meat in mayonnaise at different storage temperature. Samples were evaluated at 0, 1, 3, 7, 10, 15, 18, 25, 29, 42, and 52 storage days at the storage temperature of +4±0.5 ºC and +10±0.5 ºC. Experimentally the quality of the salad with meat in mayonnaise was characterized by measuring colour, pH and microbiological properties. The sous vide packaging was effective in protecting the product from physical, chemical, and microbial quality degradation. The sous vide packaging significantly reduces microbial growth at storage temperature of +4±0.5 ºC and +10±0.5 ºC. Moreover, it is possible to extend the product shelf life to 52 days even when stored at +10±0.5 ºC.

Keywords: salad with meat in mayonnaise, shelf life, sous videpackaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
3045 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: Composite, long fiber reinforced thermoplastics, mechanical properties, dynamic mechanical analysis, time temperature superposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
3044 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, heat demand, renewable, pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
3043 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in a climatic chamber has been presented. The magnetic moment and magnetic field of the magnets were studied experimentally.

Keywords: Permanent magnets (PM), NdFeB, corrosion behavior, temperature effect, permanent magnet synchronous machine (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559