Search results for: steel structure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3235

Search results for: steel structure.

1945 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
1944 Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Authors: R. Eslami Farsani, R. Fazaeli

Abstract:

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.

Keywords: Polyacrylonitrile Fibers, Carbon Fibers, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4839
1943 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud

Abstract:

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
1942 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

Authors: E. Gnapowski, S. Gnapowski

Abstract:

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1941 Management Software for the Elaboration of an Electronic File in the Pharmaceutical Industry Following Mexican Regulations

Authors: M. Peña Aguilar Juan, Ríos Hernández Ezequiel, R. Valencia Luis

Abstract:

For certification, certain goods of public interest, such as medicines and food, it is required the preparation and delivery of a dossier. For its elaboration, legal and administrative knowledge must be taken, as well as organization of the documents of the process, and an order that allows the file verification. Therefore, a virtual platform was developed to support the process of management and elaboration of the dossier, providing accessibility to the information and interfaces that allow the user to know the status of projects. The development of dossier system on the cloud allows the inclusion of the technical requirements for the software management, including the validation and the manufacturing in the field industry. The platform guides and facilitates the dossier elaboration (report, file or history), considering Mexican legislation and regulations, it also has auxiliary tools for its management. This technological alternative provides organization support for documents and accessibility to the information required to specify the successful development of a dossier. The platform divides into the following modules: System control, catalog, dossier and enterprise management. The modules are designed per the structure required in a dossier in those areas. However, the structure allows for flexibility, as its goal is to become a tool that facilitates and does not obstruct processes. The architecture and development of the software allows flexibility for future work expansion to other fields, this would imply feeding the system with new regulations.

Keywords: Electronic dossier, technologies for management, web software, dossier elaboration, pharmaceutical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
1940 Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool

Authors: Amoljit S. Gill, Sanjeev Kumar

Abstract:

In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19µm can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.

Keywords: Electrical Discharge Machining, Surface Roughness, Powder metallurgy compact tools, Taguchi DOE technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
1939 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
1938 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure

Authors: Ayman Abd-Elhamed, Sayed Mahmoud

Abstract:

The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shakings. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.

Keywords: Masonry infill, bare frame, response spectrum, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
1937 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115
1936 Optimization of Design Parameters for Wire Mesh Fin Arrays as a Heat Sink Using Taguchi Method

Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade

Abstract:

Heat transfer enhancement objects like extended surfaces, fins etc. are chosen for their thermal performance as well as for other design parameters depending on various applications. The present paper is on experimental study to investigate the heat transfer enhancement through wire mesh fin arrays equipped with horizontal base plate. The data used in performance analysis were obtained experimentally for the material (mild steel) for different heat inputs such as 40, 60, 80, 100 and 120 watt, by varying wire mesh diameter, fin height and spacing between two fin arrays. Using the Taguchi experimental design method, optimum design parameters and their levels were investigated. Average heat transfer coefficient was considered as a performance characteristic parameter. An L9 (33) orthogonal array was selected as an experimental plan. Optimum results were found by experimenting. It is observed that the wire mesh diameter and fin height have a higher impact on heat transfer coefficient as compared to spacing between two fin arrays.

Keywords: Heat transfer enhancement, finned surface, wire mesh diameter, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
1935 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1934 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1933 A System to Adapt Techniques of Text Summarizing to Polish

Authors: Marcin Ciura, Damian Grund, S

Abstract:

This paper describes a system, in which various methods of text summarizing can be adapted to Polish. A structure of the system is presented. A modular construction of the system and access to the system via the Internet are signaled.

Keywords: Automatic summary generation, linguistic analysis, text generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
1932 The Effect of Vertical Shear-Link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: Vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
1931 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.

Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
1930 Probabilistic Modelling of Marine Bridge Deterioration

Authors: P.C. Ryan, A.J. O' Connor

Abstract:

Chloride induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete marine structures. This paper investigates the relative performance of alternative repair options with respect to the deterioration of reinforced concrete bridge elements in marine environments. Focus is placed on the initiation phase of reinforcement corrosion. A laboratory study is described which involved exposing concrete samples to accelerated chloride-ion ingress. The study examined the relative efficiencies of two repair methods, namely Ordinary Portland Cement (OPC) concrete and a concrete which utilised Ground Granulated Blastfurnace Cement (GGBS) as a partial cement replacement. The mix designs and materials utilised were identical to those implemented in the repair of a marine bridge on the South East coast of Ireland in 2007. The results of this testing regime serve to inform input variables employed in probabilistic modelling of deterioration for subsequent reliability based analysis to compare the relative performance of the studied repair options.

Keywords: Deterioration, Marine Bridges, Reinforced Concrete, Reliability, Chloride-ion Ingress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
1929 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3482
1928 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas, the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself, implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: Energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
1927 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
1926 Mechanism of Damping in Welded Structures using Finite Element Approach

Authors: B. Singh, B. K. Nanda

Abstract:

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Keywords: Amplitude, finite element method, slip damping, tack welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
1925 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
1924 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
1923 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”

Authors: Tayebeh Norouzi

Abstract:

This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.

Keywords: Intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
1922 Finite Element Modelling of Log Wall Corner Joints

Authors: R. Kalantari, G. Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
1921 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle

Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1920 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions

Authors: M. R.Isvandzibaei, A.Jahani

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1919 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini

Abstract:

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1918 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060
1917 Business Process Management and Organizational Culture in Big Companies: Cross-Country Analysis

Authors: Dalia Suša Vugec

Abstract:

Business process management (BPM) is widely used approach focused on designing, mapping, changing, managing and analyzing business processes of an organization, which eventually leads to better performance and derives many other benefits. Since every organization strives to improve its performance in order to be sustainable and to remain competitive on the market in long-term period, numerous organizations are nowadays adopting and implementing BPM. However, not all organizations are equally successful in that. One of the ways of measuring BPM success is by measuring its maturity by calculating Process Performance Index (PPI) using ten BPM success factors. Still, although BPM is a holistic concept, organizational culture is not taken into consideration in calculating PPI. Hence, aim of this paper is twofold; first, it aims to explore and analyze the current state of BPM success factors within the big organizations from Slovenia, Croatia, and Austria and second, it aims to analyze the structure of organizational culture within the observed companies, focusing on the link with BPM success factors as well. The presented study is based on the results of the questionnaire conducted as the part of the PROSPER project (IP-2014-09-3729) and financed by Croatian Science Foundation. The results of the questionnaire reveal differences in the achieved levels of BPM success factors and therefore BPM maturity in total between the three observed countries. Moreover, the structure of organizational culture across three countries also differs. This paper discusses the revealed differences between countries as well as the link between organizational culture and BPM success factors.

Keywords: Business process management, BPM maturity, BPM success factors, organizational culture, process performance index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1916 An Ising-based Model for the Spread of Infection

Authors: Christian P. Crisostomo, Chrysline Margus N. Piñol

Abstract:

A zero-field ferromagnetic Ising model is utilized to simulate the propagation of infection in a population that assumes a square lattice structure. The rate of infection increases with temperature. The disease spreads faster among individuals with low J values. Such effect, however, diminishes at higher temperatures.

Keywords: Epidemiology, Ising model, lattice models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027