Search results for: Flow Coastdown
979 Parametric Studies of Ethylene Dichloride Purification Process
Authors: Sh. Arzani, H. Kazemi Esfeh, Y. Galeh Zadeh, V. Akbari
Abstract:
Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease.Keywords: Ethylene dichloride, purification, EDC, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031978 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.
Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422977 Financing - Scheduling Optimization for Construction Projects by using Genetic Algorithms
Authors: Hesham Abdel-Khalek, Sherif M. Hafez, Abdel-Hamid M. el-Lakany, Yasser Abuel-Magd
Abstract:
Investment in a constructed facility represents a cost in the short term that returns benefits only over the long term use of the facility. Thus, the costs occur earlier than the benefits, and the owners of facilities must obtain the capital resources to finance the costs of construction. A project cannot proceed without an adequate financing, and the cost of providing an adequate financing can be quite large. For these reasons, the attention to the project finance is an important aspect of project management. Finance is also a concern to the other organizations involved in a project such as the general contractor and material suppliers. Unless an owner immediately and completely covers the costs incurred by each participant, these organizations face financing problems of their own. At a more general level, the project finance is the only one aspect of the general problem of corporate finance. If numerous projects are considered and financed together, then the net cash flow requirements constitute the corporate financing problem for capital investment. Whether project finance is performed at the project or at the corporate level does not alter the basic financing problem .In this paper, we will first consider facility financing from the owner's perspective, with due consideration for its interaction with other organizations involved in a project. Later, we discuss the problems of construction financing which are crucial to the profitability and solvency of construction contractors. The objective of this paper is to present the steps utilized to determine the best combination of minimum project financing. The proposed model considers financing; schedule and maximum net area .The proposed model is called Project Financing and Schedule Integration using Genetic Algorithms "PFSIGA". This model intended to determine more steps (maximum net area) for any project with a subproject. An illustrative example will demonstrate the feature of this technique. The model verification and testing are put into consideration.Keywords: Project Management, Large-scale ConstructionProjects, Cash flow, Interest, Investment, Loan, Optimization, Scheduling, Financing and Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229976 Hydrogen Production by Gasification of Biomass from Copoazu Waste
Authors: Emilio Delgado, William Aperador, Alis Pataquiva
Abstract:
Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor.Keywords: Copoazu, Gasification, Hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782975 Effect of Plunging Oscillation on an Offshore Wind Turbine Blade Section
Authors: F. Rasi Marzabadi
Abstract:
A series of experiments were carried out to study unsteady behavior of the flow field as well as the boundary layer of an airfoil oscillating in plunging motion in a subsonic wind tunnel. The measurements involved surface pressure distribution complimented with surface-mounted hot-films. The effect of leadingedge roughness that simulates surface irregularities on the wind turbine blades was also studied on variations of aerodynamic loads and boundary layer behavior.Keywords: Boundary layer transition, plunging, reduced frequency, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001974 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.
Keywords: Air jet weaving, aerodynamic simulation, energy efficiency, experimental measurements, power costs, weft insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518973 Project Risk Management Techniques in Resource Allocation, Scheduling and Planning
Authors: Hossein Amoozad Khalili, Anahita Maleki
Abstract:
Normally business changes are made in order to change a level of activity in some way, whether it is sales, cash flow, productivity, or product portfolio. When attempts are made to make such changes, too often the business reverts to the old levels of activity as soon as management attention is diverted. Risk management is a field of growing interest to project managers as well as in general business and organizational management. There are several approaches used to manage risk in projects and this paper is a brief outline of some that you might encounter, with an indication of their strengths and weaknesses.Keywords: Risk Management, Project Management, Scheduling, Planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421972 Modeling of Temperature Fields of Gas Turbine Blades by Considering Heat Flow and Specified Temperature
Authors: C. Ardil
Abstract:
A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.Keywords: Modeling of temperature fields, gas turbine blades, integral methods, cooled blades, gas turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667971 Investigation of Self-Similarity Solution for Wake Flow of a Cylinder
Authors: A. B. Khoshnevis, F. Zeydabadi, F. Sokhanvar
Abstract:
The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.Keywords: Self-similarity, wake of single circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407970 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.
Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536969 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modeled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyze the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.
Keywords: Control flow graph, graph reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3500968 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC
Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.
Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228967 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405966 Region-Based Segmentation of Generic Video Scenes Indexing
Authors: Aree A. Mohammed
Abstract:
In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.Keywords: Object extraction, Video indexing, Segmentation, Optical flow, Motion estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359965 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.
Keywords: Butene, catalytic cracking, HZSM-5, modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190964 HPM Solution of Momentum Equation for Darcy-Brinkman Model in a Parallel Plates Channel Subjected to Lorentz Force
Authors: Asghar Shirazpour, Seyed Moein Rassoulinejad Mousavi, Hamid Reza Seyf
Abstract:
In this paper an analytical solution is presented for fully developed flow in a parallel plates channel under the action of Lorentz force, by use of Homotopy Perturbation Method (HPM). The analytical results are compared with exact solution and an excellent agreement has been observed between them for both Couette and Poiseuille flows. Moreover, the effects of key parameters have been studied on the dimensionless velocity profile.
Keywords: Lorentz Force, Porous Media, Homotopy Perturbation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202963 Richtmyer-Meshkov Instability and Gas-Particle Interaction of Contoured Shock-Tube Flows: A Numerical Study
Authors: Yi Liu
Abstract:
In this paper, computational fluid dynamics (CFD) is utilized to characterize a prototype biolistic delivery system, the biomedical device based on the contoured-shock-tube design (CST), with the aim at investigating shocks induced flow instabilities within the contoured shock tube. The shock/interface interactions, the growth of perturbation at an interface between two fluids of different density are interrogated. The key features of the gas dynamics and gas-particle interaction are discussed
Keywords: Simulation, Shock wave, Particle, Interface, Supersonic, Richtmyer-Meshkov Instability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771962 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019961 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884960 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.
Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983959 Average Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects
Authors: Ki-Young Kim, Jae-Ho Lim, Deok-Min Kim, Seok-Yoon Kim
Abstract:
Average current analysis checking the impact of current flow is very important to guarantee the reliability of semiconductor systems. As semiconductor process technologies improve, the coupling capacitance often become bigger than self capacitances. In this paper, we propose an analytic technique for analyzing average current on interconnects in multi-conductor structures. The proposed technique has shown to yield the acceptable errors compared to HSPICE results while providing computational efficiency.Keywords: current moment, interconnect modeling, reliability analysis, worst-case switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392958 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate
Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg
Abstract:
The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25 g, 0.75 g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.
Keywords: Arginine, blood flow, colorimetry, urea cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486957 Desalination of Salt Water by Collision with Surface Coated with Nano Particles
Authors: Hesham Muhammad Ibrahim
Abstract:
This paper introduces and proves new concept of salt dissolving in water as very tiny solid sodium chloride particles of nanovolumes, from this point of view salt water can be desalinated by collision with special surface characterized by smoothness upon nano level, high rigidity, high hardness under appropriate conditions of water launching in the form of thin laminar flow under suitable speed and angle of incidence to get desalinated water.Keywords: Desalination by collision, nano coating, water desalination, water repellent surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923956 Flexible Manufacturing System
Authors: Peter Kostal, Karol Velisek
Abstract:
Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.
Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4970955 Conjugate Heat Transfer in an Enclosure Containing a Polygon Object
Authors: Habibis Saleh, Ishak Hashim
Abstract:
Conjugate natural convection in a differentially heated square enclosure containing a polygon shaped object is studied numerically in this article. The effect of various polygon types on the fluid flow and thermal performance of the enclosure is addressed for different thermal conductivities. The governing equations are modeled and solved numerically using the built-in finite element method of COMSOL software. It is found that the heat transfer rate remains stable by varying the polygon types.Keywords: Natural convection, Polygon object, COMSOL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896954 The Importance of 3D Mesh Generation for Large Eddy Simulation of Gas – Solid Turbulent Flows in a Fluidized Beds
Authors: G. González-Silva, E. M. Matos, W. P. Martignoni, M. Mori
Abstract:
The objective of this work is to show a procedure for mesh generation in a fluidized bed using large eddy simulations (LES) of a filtered two-fluid model. The experimental data were obtained by [1] in a laboratory fluidized bed. Results show that it is possible to use mesh with less cells as compared to RANS turbulence model with granular kinetic theory flow (KTGF). Also, the numerical results validate the experimental data near wall of the bed, which cannot be predicted by RANS.model.Keywords: LES, Mesh, Gas-Solid, Fluidized bed
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132953 Conceptual Frameworks of Carbon Credit Registry System for Thailand
Authors: Akekaluck Hemtanon, Bunyarit Uyyanonvara
Abstract:
This research explores on the development of the structure of Carbon Credit Registry System those accords to the need of future events in Thailand. This research also explores the big picture of every connected system by referring to the design of each system, the Data Flow Diagram, and the design in term of the system-s data using DES standard. The purpose of this paper is to show how to design the model of each system. Furthermore, this paper can serve as guideline for designing an appropriate Carbon Credit Registry System.
Keywords: CDM, CDM BE, Annex I County, Non-Annex I country, CERs, Kyoto Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636952 Experimental Study of Frequency Behavior for a Circular Cylinder behind an Airfoil
Authors: S. Bajalan, A. Shadaram, N. Hedayat, A. Shams Taleghani
Abstract:
The interaction between wakes of bluff body and airfoil have profound influences on system performance in many industrial applications, e.g., turbo-machinery and cooling fan. The present work investigates the effect of configuration include; airfoil-s angle of attack, transverse and inline spacing of the models, on frequency behavior of the cylinder-s near-wake. The experiments carried on under subcritical flow regime, using the hot-wire anemometry (HWA). The relationship between the Strouhal numbers and arrangements provide an insight into the global physical processes of wake interaction and vortex shedding.Keywords: Airfoil, Cylinder, Strouhal, Wake interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822951 Numerical Modeling of the Depth-Averaged Flow Over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.
Keywords: Depth-averaged equations, numerical modeling, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952950 Centralized Controller for Microgrid
Authors: Adel Hamad Rafa
Abstract:
This paper, proposes a control system for use with microgrid consiste of multiple small scale embedded generation networks (SSEG networks) connected to the 33kV distribution network. The proposed controller controls power flow in the grid-connected mode of operation, enables voltage and frequency control when the SSEG networks are islanded, and resynchronises the SSEG networks with the utility before reconnecting them. The performance of the proposed controller has been tested in simulations using PSCAD.
Keywords: Microgrid, Small scale embedded generation, island mode, resynchronisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037