Search results for: viscoelastic material properties.
2991 A Research about Determination of the Quality of Feed Oils Used as Mixed Feed Raw Material from Some Feed Factories in Konya-Turkey
Authors: Gülşah Kanbur, Veysel Ayhan
Abstract:
Feed oil samples which are used as mixed feed raw material were taken from six different feed factories in March, May and July. All factories make production in Konya, Turkey and all of the samples were crude soybean oils. Physical and chemical analyses, free radical scavenger effect, and total phenol content were determined on these oil samples. Moisture (M) content was found between 0.10-22.23%, saponification number (SF) was determined 143.13 to 167.93 KOH/kg, free fatty acidity (FFA) was varied 0.73 to 35.00%, peroxide value (PV) was found between 1.53 and 28.43 meq/kg, unsaponifiable matter (USM) was determined from 0.40 to 17.10%, viscosity (V) was found between 34.30 and 625.67 mPas, sediment (S) amount was determined between 0.60-18.16%, free radical scavenger effect (FRSE) was varied 20.7 to 43.04% inhibition of the extract and total phenol (TPC) content was found between 1.20 and 2.69mg/L extract. Different results were found between months and factories.
Keywords: Crude soybean oil, Feed oils, mixed feed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21432990 Torsional Statics of Circular Nanostructures: Numerical Approach
Authors: M.Z. Islam, C.W. Lim
Abstract:
Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492989 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach
Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh
Abstract:
Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.
Keywords: Activated carbon, adsorption, immobilization, POME based lipase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25752988 Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls
Authors: Ivanova B. Natalia, Djambova Т. Svetlana, Hristev S. Ivailo
Abstract:
The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6 s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms.
Keywords: Acoustic panels, recycled felt, sound absorption, sound insulation, classroom acoustics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112987 A Zero-Cost Collar Option Applied to Materials Procurement Contracts to Reduce Price Fluctuation Risks in Construction
Authors: H. L. Yim, S. H. Lee, S. K. Yoo, J. J. Kim
Abstract:
This study proposes a materials procurement contracts model to which the zero-cost collar option is applied for heading price fluctuation risks in construction.The material contract model based on the collar option that consists of the call option striking zone of the construction company(the buyer) following the materials price increase andthe put option striking zone of the material vendor(the supplier) following a materials price decrease. This study first determined the call option strike price Xc of the construction company by a simple approach: it uses the predicted profit at the project starting point and then determines the strike price of put option Xp that has an identical option value, which completes the zero-cost material contract.The analysis results indicate that the cost saving of the construction company increased as Xc decreased. This was because the critical level of the steel materials price increasewas set at a low level. However, as Xc decreased, Xpof a put option that had an identical option value gradually increased. Cost saving increased as Xc decreased. However, as Xp gradually increased, the risk of loss from a construction company increased as the steel materials price decreased. Meanwhile, cost saving did not occur for the construction company, because of volatility. This result originated in the zero-cost features of the two-way contract of the collar option. In the case of the regular one-way option, the transaction cost had to be subtracted from the cost saving. The transaction cost originated from an option value that fluctuated with the volatility. That is, the cost saving of the one-way option was affected by the volatility. Meanwhile, even though the collar option with zero transaction cost cut the connection between volatility and cost saving, there was a risk of exercising the put option.Keywords: Construction materials, Supply chain management, Procurement, Payment, Collar option
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25222986 Characterization Study of Aluminium 6061 Hybrid Composite
Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.
Abstract:
Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29342985 Environmental Potentials within the Production of Asphalt Mixtures
Authors: Florian Gschösser, Walter Purrer
Abstract:
The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).Keywords: Asphalt mixtures, environmental potentials, life cycle assessment, material production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10922984 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method
Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, N. Tugrul, S. Piskin
Abstract:
Zinc borate is an important inorganic hydrate borate material, which can be used as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame retardant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2·(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2·(OH)6 : H3BO3). After the zinc borate synthesis, the products were analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 is determined for the synthesis of zinc borates with ultrasonic method.Keywords: Borate, ultrasonic method, zinc borate, zinc borate synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20642983 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18102982 Development of Light-Weight Fibre-Based Materials for Building Envelopes
Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot
Abstract:
Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even though their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of these composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even though these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.
Keywords: Fibre-cement composite, granulated expanded glass, light-weighing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20032981 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey
Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen
Abstract:
The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater, we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate onedimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.
Keywords: Seismic data, Gokpinar Damp, urban planning, Denizli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23582980 S-Fuzzy Left h-Ideal of Hemirings
Authors: D.R Prince Williams
Abstract:
The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.
Keywords: hemiring, left h-ideal, anti fuzzy h-ideal, S-fuzzy left hideal, t-conorm , homomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17232979 The Study of Synbiotic Dairy Products Rheological Properties during Shelf-Life
Authors: Ilze Beitane, Inga Ciprovica
Abstract:
The influence of lactulose and inulin on rheological properties of fermented milk during storage was studied.Pasteurized milk, freeze-dried starter culture Bb-12 (Bifidobacterium lactis, Chr. Hansen, Denmark), inulin – RAFTILINE®HP (ORAFI, Belgium) and syrup of lactulose (Duphalac®, the Netherlands) were used for experiments. The fermentation process was realized at 37 oC for 16 hours and the storage of products was provided at 4 oC for 7 days. Measurements were carried out by BROOKFIELD standard methods and the flow curves were described by Herschel-Bulkley model. The results of dispersion analysis have shown that both the concentration of prebiotics (p=0.04<0.05) and shelf life (p=0.003<0.05) have a significant influence on the apparent viscosity of the product.Keywords: Apparent viscosity, B.lactis, consistency coefficient, flow behavior index, prebiotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22512978 Fabrication of Wearable Antennas through Thermal Deposition
Authors: Jeff Letcher, Dennis Tierney, Haider Raad
Abstract:
Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.Keywords: Thermal deposition, wearable antennas, Bluetooth technology, flexible electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13792977 Lightweight Materials Obtained by Utilization of Agricultural Waste
Authors: Bogdan Bogdanov, Irena Markovska, Yancho Hristov, Dimitar Georgiev
Abstract:
Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose.Keywords: lightweight ceramic materials, properties, agro-waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20282976 The Influence of Substrate Bias on the Mechanical Properties of a W- and S-containing DLC-based Solid-lubricant Film
Authors: Guojia Ma, Guoqiang Lin, Shuili Gong, Gang Sun, Dawang Wang
Abstract:
A diamond-like carbon (DLC) based solid-lubricant film was designed and DLC films were successfully prepared using a microwave plasma enhanced magnetron sputtering deposition technology. Post-test characterizations including Raman spectrometry, X-ray diffraction, nano-indentation test, adhesion test, friction coefficient test were performed to study the influence of substrate bias voltage on the mechanical properties of the W- and S-doped DLC films. The results indicated that the W- and S-doped DLC films also had the typical structure of DLC films and a better mechanical performance achieved by the application of a substrate bias of -200V.Keywords: Adhesive Strength, Coefficient of Friction, Substrate Bias, W- and S-doped DLC film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19682975 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16952974 Microscopic Analysis of Welded Dental Alloys
Authors: S. Porojan, L. Sandu, F. Topalâ
Abstract:
Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19232973 Valorization of Residues from Forest Industry for the Generation of Energy
Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto
Abstract:
The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.
Keywords: Bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8142972 A Finite Element Method Simulation for Rocket Motor Material Selection
Authors: T. Kritsana, P. Sawitri, P. Teeratas
Abstract:
This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa.
The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.
Keywords: Rocket motor case, Finite Element Method, principal Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25462971 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks
Authors: V. Revathi, J. Thaarrini, M. Venkob Rao
Abstract:
This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.
Keywords: Bottom ash, GGBS, alkali activation, paver block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40362970 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice
Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith
Abstract:
Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.
Keywords: Instant rice, pasting properties, pregelatinization, retrogradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16262969 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.
Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17542968 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence
Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz
Abstract:
Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.
Keywords: Automotive brake, friction material, brake dynamometer, compressibility test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18352967 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation
Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo
Abstract:
Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.
Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192966 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method
Authors: M. Ghobeiti-Hasab, Z. Shariati
Abstract:
In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.
Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37262965 Phytochemical Profiles and Antioxidant Activity of Selected Indigenous Vegetables in Northern Mindanao, Philippines
Authors: Renee P. Baang, Romeo M. Del Rosario, Nenita D. Palmes
Abstract:
The crude methanol extracts of five indigenous vegetables namely, Amarathus tricolor, Basella rubra L., Chochurus olitorius L., Ipomea batatas, and Momordica chuchinensis L., were examined for their phytochemical profile and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The values for DPPH radical scavenging activity ranged from 7.6-89.53% with B. rubra and I. batatas having the lowest and highest values, respectively. The total flavonoid content of all five indigenous vegetables ranged from 74.65-277.3 mg quercetin equivalent per gram of dried vegetable material while the total phenolic content ranged from 1.93-6.15 mg gallic acid equivalent per gram dried material. Phytochemical screening revealed the presence of steroids, flavonoids, saponins, tannins, carbohydrates and reducing sugars, which may also be associated with the antioxidant activity shown by these indigenous vegetables.
Keywords: Antioxidant, DPPH radical scavenging activity, Philippine indigenous vegetables, phytochemical screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47862964 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method
Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski
Abstract:
The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.
Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992963 Topology Optimization of Structures with Web-Openings
Authors: D. K. Lee, S. M. Shin, J. H. Lee
Abstract:
Topology optimization technique utilizes constant element densities as design parameters. Finally, optimal distribution contours of the material densities between voids (0) and solids (1) in design domain represent the determination of topology. It means that regions with element density values become occupied by solids in design domain, while there are only void phases in regions where no density values exist. Therefore the void regions of topology optimization results provide design information to decide appropriate depositions of web-opening in structure. Contrary to the basic objective of the topology optimization technique which is to obtain optimal topology of structures, this present study proposes a new idea that topology optimization results can be also utilized for decision of proper web-opening’s position. Numerical examples of linear elastostatic structures demonstrate efficiency of methodological design processes using topology optimization in order to determinate the proper deposition of web-openings.Keywords: Topology optimization, web-opening, structure, element density, material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14232962 Extraction in Two-Phase Systems and Some Properties of Laccase from Lentinus polychrous
Authors: K. Ratanapongleka, J. Phetsom
Abstract:
Extraction of laccase produced by L. polychrous in an aqueous two-phase system, composed of polyethylene glycol and phosphate salt at pH 7.0 and 250C was investigated. The effect of PEG molecular weight, PEG concentration and phosphate concentration was determined. Laccase preferentially partitioned to the top phase. Good extraction of laccase to the top phase was observed with PEG 4000. The optimum system was found in the system containing 12% w/w PEG 4000 and 16% w/w phosphate salt with KE of 88.3, purification factor of 3.0-fold and 99.1% yield. Some properties of the enzyme such as thermal stability, effect of heavy metal ions and kinetic constants were also presented in this work. The thermal stability decreased sharply with high temperature above 60 0C. The enzyme was inhibited by Cd2+, Pb2+, Zn2+ and Cu2+. The Vmax and Km values of the enzyme were 74.70 μmol/min/ml and 9.066 mM respectively.Keywords: Aqueous Two Phase System, Laccase, Lentinuspolychrous,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914